Skip to content

Commit

Permalink
More linting.
Browse files Browse the repository at this point in the history
  • Loading branch information
arokem committed Feb 22, 2024
1 parent 20cb737 commit 844a7eb
Show file tree
Hide file tree
Showing 2 changed files with 16 additions and 16 deletions.
30 changes: 15 additions & 15 deletions mriqc/qc/diffusion.py
Original file line number Diff line number Diff line change
Expand Up @@ -136,19 +136,19 @@ def cc_snr(data, gtab, bmag=None, mask=None):
for ind, bval in enumerate(bvals):
if bval == 0:
mean_signal = np.mean(data[..., rounded_bvals == 0], axis=-1)
cc_snr_worst[ind] = np.mean(mean_signal/std_signal)
cc_snr_best[ind] = np.mean(mean_signal/std_signal)
cc_snr_worst[ind] = np.mean(mean_signal / std_signal)
cc_snr_best[ind] = np.mean(mean_signal / std_signal)
continue

bval_data = data[..., rounded_bvals == bval]
bval_bvecs = gtab.bvecs[rounded_bvals == bval]

axis_X = np.argmin(np.sum(
(bval_bvecs-np.array([1, 0, 0]))**2, axis=-1))
(bval_bvecs-np.array([1, 0, 0])) ** 2, axis=-1))
axis_Y = np.argmin(np.sum(
(bval_bvecs-np.array([0, 1, 0]))**2, axis=-1))
(bval_bvecs-np.array([0, 1, 0])) ** 2, axis=-1))
axis_Z = np.argmin(np.sum(
(bval_bvecs-np.array([0, 0, 1]))**2, axis=-1))
(bval_bvecs-np.array([0, 0, 1])) ** 2, axis=-1))

data_X = bval_data[..., axis_X]
data_Y = bval_data[..., axis_Y]
Expand All @@ -158,9 +158,9 @@ def cc_snr(data, gtab, bmag=None, mask=None):
mean_signal_Y = np.mean(data_Y[mask_cc_part])
mean_signal_Z = np.mean(data_Z[mask_cc_part])

cc_snr_worst[ind] = np.mean(mean_signal_X/std_signal)
cc_snr_worst[ind] = np.mean(mean_signal_X / std_signal)
cc_snr_best[ind] = np.mean(np.mean(mean_signal_Y,
mean_signal_Z)/std_signal)
mean_signal_Z) / std_signal)

return cc_snr_worst, cc_snr_best

Expand Down Expand Up @@ -189,7 +189,7 @@ def get_spike_mask(data, z_threshold=3, grouping_vals=None, bmag=None):
numpy array
"""
if grouping_vals is None:
threshold = (z_threshold*np.std(data)) + np.mean(data)
threshold = (z_threshold * np.std(data)) + np.mean(data)
spike_mask = data > threshold
return spike_mask

Expand All @@ -201,15 +201,15 @@ def get_spike_mask(data, z_threshold=3, grouping_vals=None, bmag=None):
if grouping_vals.shape == data.shape:
for gval in gvals:
gval_data = data[rounded_grouping_vals == gval]
gval_threshold = ((z_threshold * np.std(gval_data)) +
np.mean(gval_data))
gval_threshold = ((z_threshold * np.std(gval_data))
+ np.mean(gval_data))
threshold_mask[rounded_grouping_vals == gval] = (
gval_threshold * np.ones(gval_data.shape))
else:
for gval in gvals:
gval_data = data[..., rounded_grouping_vals == gval]
gval_threshold = ((z_threshold * np.std(gval_data)) +
np.mean(gval_data))
gval_threshold = ((z_threshold * np.std(gval_data))
+ np.mean(gval_data))
threshold_mask[..., rounded_grouping_vals == gval] = (
gval_threshold * np.ones(gval_data.shape))

Expand Down Expand Up @@ -242,8 +242,8 @@ def get_slice_spike_percentage(data, z_threshold=3, slice_threshold=.05):
slice_spike_percentage = np.zeros(ndim)

for ii in range(ndim):
slice_spike_percentage[ii] = np.mean(np.mean(spike_mask, ii) >
slice_threshold)
slice_spike_percentage[ii] = np.mean(np.mean(spike_mask, ii)
> slice_threshold)

return slice_spike_percentage

Expand All @@ -270,4 +270,4 @@ def get_global_spike_percentage(data, z_threshold=3):


def noise_func_for_shelled_data(shelled_data, gtab):
pass
pass
2 changes: 1 addition & 1 deletion mriqc/qc/tests/test_diffusion.py
Original file line number Diff line number Diff line change
Expand Up @@ -109,4 +109,4 @@ def test_cc_snr(ddata):

assert cc_snr_best.shape == gtab.bvals.shape
assert cc_snr_worst.shape == gtab.bvals.shape
assert np.min(cc_snr_best - cc_snr_worst) >= 0
assert np.min(cc_snr_best - cc_snr_worst) >= 0

0 comments on commit 844a7eb

Please sign in to comment.