id-svo-extractor is a heuristic tool designed to extract SVO (Subject-Verb-Object) triples from Indonesian text. It uses Stanza's state-of-the-art Indonesian language pipeline for NLP.
To use id-svo-extractor, you will need Python v3.10 or higher and the following Python package:
- spacy-stanza v1.0.4
You must also download Stanza's Indonesian models for tokenize
, mwt
, pos
, lemma
, and depparse
processors before initializing the pipeline.
Install the package directly from PyPI:
pip install id-svo-extractor
Here's a basic example to get you started.
from id_svo_extractor import create_pipeline
from id_svo_extractor.utils import collect_svo_triples
from stanza import download
# Download Stanza's Indonesian models for tokenize, mwt, pos, lemma, and depparse processors.
# This step is mandatory before initializing the NLP pipeline.
download("id", processors="tokenize,mwt,pos,lemma,depparse")
# Initialize the NLP pipeline.
nlp = create_pipeline()
doc = nlp("Niko dan Okin mendesain brosur promosi dan mencetak poster iklan.")
for sentence in doc.sents:
# Extracted triples for each sentence are stored in `svo_triples` custom attribute.
print(sentence._.svo_triples)
# Output:
# [ SVOTriple(s=[Niko], v=[mendesain], o=[brosur, promosi]),
# SVOTriple(s=[Okin], v=[mendesain], o=[brosur, promosi]),
# SVOTriple(s=[Niko], v=[mencetak], o=[poster, iklan]),
# SVOTriple(s=[Okin], v=[mencetak], o=[poster, iklan]) ]
print(collect_svo_triples(doc))
# Output:
# [ ('Niko', 'mendesain', 'brosur promosi'),
# ('Okin', 'mendesain', 'brosur promosi'),
# ('Niko', 'mencetak', 'poster iklan'),
# ('Okin', 'mencetak', 'poster iklan') ]
This project is licensed under the Apache License 2.0.