Skip to content

taggy is a typescript-based frontend package to automatically tag (or categorize) textual content.

License

Notifications You must be signed in to change notification settings

open-taggy/taggy

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

90 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

taggy | Open Semantic Tagging

mtl-taggy

taggy is a typescript-based frontend package to automatically tag (or categorize) textual content



Please Note

This here is to get you going quickly. For more information on taggy, more demos and extended docs, please go here.

Getting Started

Import it via CDN:

<script src="https://cdn.jsdelivr.net/npm/@b1tsteller/taggy"></script>

Or install taggy with npm:

npm install @b1tsteller/taggy

Then import the package and create a new instance with at least an input and an output-element:

import { Taggy } from "@b1tsteller/taggy";

let inputElement = document.getElementById('inputField');
let outputElement = document.getElementById("outputDiv");

let taggy = new Taggy(inputElement, outputElement);
  • The input-element is a html-tag, preferably <input> or <textarea>, but can be everything holding text

  • The output-element can be a html-tag of any kind, preferably <div>

Get your glossary ready and adjust it to your needs:

The default comes integrated under /data/glossary.json with the data shown below. But you definetly want to use your own :)

You can set it like this:

import myGlossary from "../data/my-glossary.json";

taggy.setGlossary(myGlossary);
The structure is as follows:
{
  "tags": [
    {
      "category": "Herbs and Spices",
      "keywords": ["Rosemary", "Parsley", "Pepper", "Thyme", "Mint", "Chilli", "Basil", "Dill"]
    },
    {
        "category": "Vegetables",
        "keywords": ["Potatoes", "Cucumber", "Garlic", "Carrots", "Spinach", "Onion", "Mushrooms"]
    },
    {
      "category": "Fish",
      "keywords": ["Salmon", "Tuna", "Red Snapper", "Sardines", "Herring", "Flounder", "Bass", "Mackerel"]
    }
  ]
}

Retrieve detected single Tag:

The input-element which was provided on instatiation will receive the parameter "value" with the detected tag in it. For example:

<div id="outputDiv" value="Economy">
  <div class="taggy-tag">Economy</div>
</div>

Retrieve multiple Tags:

You can get multiple detected tags via the override-function, even when it's not visible to your users (e.g. "display: none"). Please make sure to turn it on (see options below). You'll get an element like this:

<div id="override" value="Politics, Science">
  <div class="taggy-tag taggy-override">Politics</div>
  <div class="taggy-tag taggy-override">Science</div>
</div>

Options

You can add additional params when creating the taggy object:

let taggy = new Taggy(inputElement, outputElement, 
{ submitButton: submit, loaderElement: loaderDiv, includeTop: true });
Parameter Type Info
submitButton HTMLElement Element (button) triggers analysis on click
frequencyOutput HTMLSpanElement Element contains additional info on most occurencies of detected keywords
overrideOutput HTMLInputElement Element shows multiple detected tags if analysis is not unambiguous
loaderElement HTMLElement Element (loader/spinner) that gets hidden on completion
useSubmit boolean true -> analyze input while typing / false -> use of submit button to process ('submitButton' has to be defined) | default: false
waittime number Duration for the time to wait until tags show up | default: 1000
language string Language Code in ISO 639-1; see list of available options below
assignTop boolean true -> return category of found keyword / false -> return the keyword itself | default: true
includeTop boolean Include name of the categories themself as keywords | default: false
messageNotFound string Customize displayed message if no tag is found | default "No matching tag found"
openthesaurus boolean Add call to openthesaurus API to enrich words (experimental) | default: false

Framework Integration

Angular

This is a basic example on how you can integrate taggy into an Angular-project:

In your HTML-Template:

<input type="text" #taggyInput />
<div #taggyOutput></div>

In your .ts-file:

import { ViewChild, ElementRef } from "@angular/core";
import { Taggy } from "@b1tsteller/taggy";

...
@ViewChild("taggyInput") taggyInput: ElementRef;
@ViewChild("taggyOutput") taggyOutput: ElementRef;

...
ngAfterViewInit() {
  let taggyObject = new Taggy(this.taggyInput.nativeElement, this.taggyOutput.nativeElement);
}

Languages

taggy is language agnostic. But it's advised to define it, so common (and for this task irrelevant words) aka stopwords ("by", "a", "the", "also", "and", ...) in the input won't be processed. Below list from here

ISO 639-1 Language List
ISO 639-1 Code Language
af Afrikaans
ar Arabic
hy Armenian
eu Basque
bn Bengali
br Breton
bg Bulgarian
ca Catalan; Valencian
cs Czech
zh Chinese
da Danish
de German
nl Dutch; Flemish
el Greek, Modern (1453-)
en English
eo Esperanto
et Estonian
fa Persian
fi Finnish
fr French
ga Irish
gl Galician
gu Gujarati
ha Hausa
he Hebrew
hi Hindi
hr Croatian
hu Hungarian
id Indonesian
it Italian
ja Japanese
ko Korean
ku Kurdish
la Latin
lv Latvian
lt Lithuanian
mr Marathi
ms Malay
no Norwegian
pl Polish
pt Portuguese
ro Romanian; Moldavian; Moldovan
ru Russian
sk Slovak
sl Slovenian
so Somali
st Sotho, Southern
es Spanish; Castilian
sw Swahili
sv Swedish
tl Tagalog
th Thai
tr Turkish
uk Ukrainian
ur Urdu
vi Vietnamese
yo Yoruba
zu Zulu

Glossary Building

If you don't have your own glossary ready to feed taggy, you can build your own with a service like this https://freetools.textmagic.com/word-cloud-generator and the following steps:

  1. Paste all of your existing training/example texts for one category into the input field
  2. Hit "Generate" and receive the wordcloud for this category
  3. Click download as CSV and you have your keywords ready
  4. Put the most frequent ones into your taggy glossary-JSON
  5. Repeat steps 1 - 4 for all your other categories

About

taggy is a typescript-based frontend package to automatically tag (or categorize) textual content.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published