-
Notifications
You must be signed in to change notification settings - Fork 157
basic_static_route_support_test
Github Action edited this page Sep 27, 2024
·
5 revisions
- Static route ECMP must be supported
- Static route metric must be supported
- Static route Administrative Distance / Preference must be supported
-
set-tag
attribute must be supported for static routes - Disabling recursive nexthop resolution must be supported
- Connect DUT port-1, port-2, port-3 and port-4 to ATE port-1, port-2, port-3 and port-4 respectively
- Configure IPv4/IPv6 addresses on DUT and ATE the interfaces
- Configure one IPv4 destination i.e.
ipv4-network = 203.0.113.0/24
connected to ATE port 1 and 2 - Configure one IPv6 destination i.e.
ipv6-network = 2001:db8:128:128::/64
connected to ATE port 1 and 2
- Configure IPv4 static routes:
- Configure one IPv4 static route i.e. ipv4-route-a on the DUT for
destination
ipv4-network 203.0.113.0/24
with the next hop set to the IPv4 address of ATE port-1 - Configure another IPv4 static route i.e. ipv4-route-b on the DUT for
destination
ipv4-network 203.0.113.0/24
with the next hop set to the IPv4 address of ATE port-2
- Configure one IPv4 static route i.e. ipv4-route-a on the DUT for
destination
- Validate both the routes i.e. ipv4-route-[a|b] are configured and reported
correctly
- /network-instances/network-instance/protocols/protocol/static-routes/static/prefix
- Configure IPv6 static routes:
- Configure one IPv6 static route i.e. ipv6-route-a on the DUT for
destination
ipv6-network 2001:db8:128:128::/64
with the next hop set to the IPv6 address of ATE port-1 - Configure another IPv6 static route i.e. ipv6-route-b on the DUT for
destination
ipv6-network 2001:db8:128:128::/64
with the next hop set to the IPv6 address of ATE port-2
- Configure one IPv6 static route i.e. ipv6-route-a on the DUT for
destination
- Validate both the routes i.e. ipv6-route-[a|b] are configured and reported
correctly
- /network-instances/network-instance/protocols/protocol/static-routes/static/prefix
- Initiate traffic from ATE port-3 towards destination
ipv4-network 203.0.113.0/24
andipv6-network 2001:db8:128:128::/64
- Validate that traffic is received from DUT on both port-1 and port-2 and ECMP works
- Configure metric of ipv4-route-b and ipv6-route-b to 100
- /network-instances/network-instance/protocols/protocol/static-routes/static/next-hops/next-hop/config/metric
- Validate that the metric is set correctly
- /network-instances/network-instance/protocols/protocol/static-routes/static/next-hops/next-hop/state/metric
- Initiate traffic from ATE port-3 towards destination
ipv4-network 203.0.113.0/24
andipv6-network 2001:db8:128:128::/64
- Validate that traffic is received from DUT on port-1 and not on port-2
- Configure preference of ipv4-route-a and ipv6-route-a to 50
- /network-instances/network-instance/protocols/protocol/static-routes/static/next-hops/next-hop/config/preference
- Validate that the preference is set correctly
- /network-instances/network-instance/protocols/protocol/static-routes/static/next-hops/next-hop/state/preference
- Initiate traffic from ATE port-3 towards destination
ipv4-network 203.0.113.0/24
andipv6-network 2001:db8:128:128::/64
- Validate that traffic is now received from DUT on port-2 and not on port-1
- Configure a tag of value 10 on ipv4 and ipv6 static routes
- /network-instances/network-instance/protocols/protocol/static-routes/static/config/set-tag
- Validate the tag is set
- /network-instances/network-instance/protocols/protocol/static-routes/static/state/set-tag
- Remove metric of 100 from ipv4-route-b and ipv6-route-b
- /network-instances/network-instance/protocols/protocol/static-routes/static/next-hops/next-hop/config/metric
- Remove preference of 50 from ipv4-route-a and ipv6-route-a
- /network-instances/network-instance/protocols/protocol/static-routes/static/next-hops/next-hop/config/preference
- Change the IPv6 next-hop of the ipv6-route-a with the next hop set to the IPv4 address of ATE port-1
- Change the IPv6 next-hop of the ipv6-route-b with the next hop set to the IPv4 address of ATE port-2
- Validate both the routes i.e. ipv6-route-[a|b] are configured and the IPv4
next-hop is reported correctly
- /network-instances/network-instance/protocols/protocol/static-routes/static/prefix
- /network-instances/network-instance/protocols/protocol/static-routes/static/next-hops/next-hop/config/next-hop
- Initiate traffic from ATE port-3 towards destination
ipv6-network 2001:db8:128:128::/64
- Validate that traffic is received from DUT on both port-1 and port-2 and ECMP works
- Change the IPv4 next-hop of the ipv4-route-a with the next hop set to the IPv6 address of ATE port-1
- Change the IPv4 next-hop of the ipv4-route-b with the next hop set to the IPv6 address of ATE port-2
- Validate both the routes i.e. ipv4-route-[a|b] are configured and the IPv6
next-hop is reported correctly
- /network-instances/network-instance/protocols/protocol/static-routes/static/prefix
- /network-instances/network-instance/protocols/protocol/static-routes/static/next-hops/next-hop/config/next-hop
- Initiate traffic from ATE port-3 towards destination
ipv4-network 203.0.113.0/24
- Validate that traffic is received from DUT on both port-1 and port-2 and ECMP works
- Configure IPv4 static routes:
- Configure one IPv4 static route i.e. ipv4-route-a on the DUT for
destination
ipv4-network 203.0.113.0/24
with the next hop set to DROP local-defined next hop
- Configure one IPv4 static route i.e. ipv4-route-a on the DUT for
destination
- Validate the route is configured and reported correctly
- /network-instances/network-instance/protocols/protocol/static-routes/static/prefix
- Configure IPv6 static routes:
- Configure one IPv6 static route i.e. ipv6-route-a on the DUT for
destination
ipv6-network 2001:db8:128:128::/64
with the next hop set to DROP local-defined next hop
- Configure one IPv6 static route i.e. ipv6-route-a on the DUT for
destination
- Validate the route is configured and reported correctly
- /network-instances/network-instance/protocols/protocol/static-routes/static/prefix
- Initiate traffic from ATE port-3 towards destination
ipv4-network 203.0.113.0/24
andipv6-network 2001:db8:128:128::/64
- Validate that traffic is dropped on DUT and not received on port-1 and port-2
- Configure ipv4 and ipv6 ISIS between ATE port-1 <-> DUT port-1 and ATE
port-2 <-> DUT port2
- /network-instances/network-instance/protocols/protocol/isis/global/afi-safi
- Configure one IPv4 /32 host route i.e.
ipv4-loopback = 198.51.100.100/32
connected to ATE and advertised to DUT through both the IPv4 ISIS adjacencies - Configure one IPv6 /128 host route i.e.
ipv6-loopback = 2001:db8::64:64::1/128
connected to ATE and advertised to DUT through both the IPv6 ISIS adjacencies - Configure one IPv4 static route i.e. ipv4-route on the DUT for destination
ipv4-network 203.0.113.0/24
with the next hop ofipv4-loopback 198.51.100.100/32
. Remove all other existing next hops for the route.- /network-instances/network-instance/protocols/protocol/static-routes/static/next-hops/next-hop/config/next-hop
- Configure one IPv6 static route i.e. ipv6-route on the DUT for destination
ipv6-network 2001:db8:128:128::/64
with the next hop ofipv6-loopback = 2001:db8::64:64::1/128
. Remove all other existing next hops for the route.- /network-instances/network-instance/protocols/protocol/static-routes/static/next-hops/next-hop/config/next-hop
- Initiate traffic from ATE port-3 towards destination
ipv4-network 203.0.113.0/24
andipv6-network 2001:db8:128:128::/64
- Validate that traffic is received from DUT (doesn't matter which port)
- Disable static route next-hop recursive lookup (set to false)
- /network-instances/network-instance/protocols/protocol/static-routes/static/next-hops/next-hop/config/recurse
- Validate static route next-hop recursive lookup is disabled
- /network-instances/network-instance/protocols/protocol/static-routes/static/next-hops/next-hop/state/recurse
- Initiate traffic from ATE port-3 towards destination
ipv4-network 203.0.113.0/24
andipv6-network 2001:db8:128:128::/64
- Validate that traffic is NOT received from DUT
- Configure one IPv4 static route i.e. ipv4-route with the next hop set to the IPv4 address of ATE port-2(0 index) and port-3(1 index).
- Validate next-hops of
ipv4-route
static route and indexes. - Update IPv4 static route i.e. ipv4-route with the next hop set to the IPv4 address of ATE port-1(0 index), port-2(1 index), port-3(2 index) and port-4(3 index).
- Validate next-hops of
ipv4-route
static route and indexes. - Remove two next hops at index 0 and 3 added in previous step.
- Validate next-hops of
ipv4-route
static route and indexes.
The below yaml defines the OC paths intended to be covered by this test. OC paths used for test setup are not listed here.
paths:
## Config Paths ##
/interfaces/interface/config/enabled:
/interfaces/interface/subinterfaces/subinterface/ipv4/config/enabled:
/interfaces/interface/subinterfaces/subinterface/ipv6/config/enabled:
/network-instances/network-instance/protocols/protocol/static-routes/static/config/prefix:
/network-instances/network-instance/protocols/protocol/static-routes/static/config/set-tag:
/network-instances/network-instance/protocols/protocol/static-routes/static/next-hops/next-hop/config/next-hop:
/network-instances/network-instance/protocols/protocol/static-routes/static/next-hops/next-hop/config/metric:
/network-instances/network-instance/protocols/protocol/static-routes/static/next-hops/next-hop/config/preference:
/network-instances/network-instance/protocols/protocol/static-routes/static/next-hops/next-hop/config/recurse:
## State Paths ##
/network-instances/network-instance/protocols/protocol/static-routes/static/state/prefix:
/network-instances/network-instance/protocols/protocol/static-routes/static/state/set-tag:
/network-instances/network-instance/protocols/protocol/static-routes/static/next-hops/next-hop/state/next-hop:
/network-instances/network-instance/protocols/protocol/static-routes/static/next-hops/next-hop/state/metric:
/network-instances/network-instance/protocols/protocol/static-routes/static/next-hops/next-hop/state/preference:
/network-instances/network-instance/protocols/protocol/static-routes/static/next-hops/next-hop/state/recurse:
rpcs:
gnmi:
gNMI.Subscribe:
gNMI.Set:
- FFF
-
Home
- Test Plans
- ACCTZ-1.1: Record Subscribe Full
- ACCTZ-2.1: Record Subscribe Partial
- ACCTZ-3.1: Record Subscribe Non-gRPC
- ACCTZ-4.1: Record History Truncation
- ACCTZ-4.2: Record Payload Truncation
- Authz: General Authz (1-4) tests
- CNTR-1: Basic container lifecycle via
gnoi.Containerz
. - CNTR-2: Container network connectivity tests
- Credentialz-1: Password console login
- Credentialz-2: SSH Password Login Disallowed
- Credentialz-3: Host Certificates
- Credentialz-4: SSH Public Key Authentication
- Credentialz-5: Hiba Authentication
- DP-1.2: QoS policy feature config
- DP-1.3: QoS ECN feature config
- DP-1.4: QoS Interface Output Queue Counters
- DP-1.7: One strict priority queue traffic test
- DP-1.8: Two strict priority queue traffic test
- DP-1.9: WRR traffic test
- DP-1.10: Mixed strict priority and WRR traffic test
- DP-1.11: Bursty traffic test
- DP-1.14: QoS basic test
- DP-1.17: DSCP Transparency with ECN
- DP-2.4: Police traffic on input matching all packets using 1 rate, 2 color marker
- example-0.1: Topology Test
- FP-1.1: Power admin DOWN/UP Test
- gNMI-1.1: cli Origin
- gNMI-1.2: Benchmarking: Full Configuration Replace
- gNMI-1.3: Benchmarking: Drained Configuration Convergence Time
- gNMI-1.4: Telemetry: Inventory
- gNMI-1.5: Telemetry: Port Speed Test
- gNMI-1.8: Configuration Metadata-only Retrieve and Replace
- gNMI-1.9: Get requests
- gNMI-1.10: Telemetry: Basic Check
- gNMI-1.11: Telemetry: Interface Packet Counters
- gNMI-1.12: Mixed OpenConfig/CLI Origin
- gNMI-1.13: Optics Telemetry, Instant, threshold, and miscellaneous static info
- gNMI-1.14: OpenConfig metadata consistency during large config push
- gNMI-1.15: Set Requests
- gNMI-1.16: fabric redundancy test
- gNMI-1.17: Controller Card redundancy test
- gNMI-1.18: gNMI subscribe with sample mode for backplane capacity counters
- gNMI-1.19: ConfigPush after Control Card switchover
- gNMI-1.20: Telemetry: Optics Thresholds
- gNMI-1.21: Integrated Circuit Hardware Resource Utilization Test
- gNMI-1.22: Controller card port attributes
- gNMI-1.27: gNMI Sample Mode Test
- GNMI-2: gnmi_subscriptionlist_test
- gNOI-2.1: Packet-based Link Qualification
- gNOI-3.1: Complete Chassis Reboot
- gNOI-3.2: Per-Component Reboot
- gNOI-3.3: Supervisor Switchover
- gNOI-3.4: Chassis Reboot Status and Reboot Cancellation
- gNOI-4.1: Software Upgrade
- gNOI-5.1: Ping Test
- gNOI-5.2: Traceroute Test
- gNOI-5.3: Copying Debug Files
- gNOI-6.1: Factory Reset
- Health-1.1: Generic Health Check
- Health-1.2: Healthz component status paths
- MGT-1: Management HA solution test
- MTU-1.3: Large IP Packet Transmission
- OC-1.2: Default Address Families
- OC-26.1: Network Time Protocol (NTP)
- P4RT-1.1: Base P4RT Functionality
- P4RT-1.2: P4RT Daemon Failure
- P4RT-2.1: P4RT Election
- P4RT-2.2: P4RT Metadata Validation
- P4RT-3.1: Google Discovery Protocol: PacketIn
- P4RT-3.2: Google Discovery Protocol: PacketOut
- P4RT-3.21: Google Discovery Protocol: PacketOut with LAG
- P4RT-5.1: Traceroute: PacketIn
- P4RT-5.2: Traceroute Packetout
- P4RT-5.3: Traceroute: PacketIn With VRF Selection
- P4RT-6.1: Required Packet I/O rate: Performance
- P4RT-7.1: LLDP: PacketIn
- P4RT-7.2: LLDP: PacketOut
- Replay-1.0: Record/replay presession test
- Replay-1.1: Record/replay diff command trees test
- Replay-1.2: P4RT Replay Test
- RT-1.1: Base BGP Session Parameters
- RT-1.2: BGP Policy & Route Installation
- RT-1.3: BGP Route Propagation
- RT-1.4: BGP Graceful Restart
- RT-1.5: BGP Prefix Limit
- RT-1.7: Local BGP Test
- RT-1.10: BGP Keepalive and HoldTimer Configuration Test
- RT-1.11: BGP remove private AS
- RT-1.12: BGP always compare MED
- RT-1.14: BGP Long-Lived Graceful Restart
- RT-1.19: BGP 2-Byte and 4-Byte ASN support
- RT-1.21: BGP TCP MSS and PMTUD
- RT-1.23: BGP AFI SAFI OC DEFAULTS
- RT-1.24: BGP 2-Byte and 4-Byte ASN support with policy
- RT-1.25: Management network-instance default static route
- RT-1.26: Basic static route support
- RT-1.27: Static route to BGP redistribution
- RT-1.28: BGP to IS-IS redistribution
- RT-1.29: BGP chained import/export policy attachment
- RT-1.30: BGP nested import/export policy attachment
- RT-1.32: BGP policy actions - MED, LocPref, prepend, flow-control
- RT-1.33: BGP Policy with prefix-set matching
- RT-1.34: BGP route-distance configuration
- RT-1.51: BGP multipath ECMP
- RT-1.52: BGP multipath UCMP support with Link Bandwidth Community
- RT-1.53: prefix-list test
- RT-1.54: BGP Override AS-path split-horizon
- RT-1.55: BGP session mode (active/passive)
- RT-2.1: Base IS-IS Process and Adjacencies
- RT-2.2: IS-IS LSP Updates
- RT-2.6: IS-IS Hello-Padding enabled at interface level
- RT-2.7: IS-IS Passive is enabled at interface level
- RT-2.8: IS-IS metric style wide not enabled
- RT-2.9: IS-IS metric style wide enabled
- RT-2.10: IS-IS change LSP lifetime
- RT-2.11: IS-IS Passive is enabled at the area level
- RT-2.12: Static route to IS-IS redistribution
- RT-2.13: Weighted-ECMP for IS-IS
- RT-2.14: IS-IS Drain Test
- RT-2.16: IS-IS Graceful Restart Helper
- RT-2-17: IS-IS Graceful Restart Restarting
- RT-3.1: Policy based VRF selection
- RT-3.2: Multiple <Protocol, DSCP> Rules for VRF Selection
- RT-4.10: AFTs Route Summary
- RT-4.11: AFTs Route Summary
- RT-5.1: Singleton Interface
- RT-5.2: Aggregate Interfaces
- RT-5.3: Aggregate Balancing
- RT-5.4: Aggregate Forwarding Viable
- RT-5.5: Interface hold-time
- RT-5.6: Interface Loopback mode
- RT-5.7: Aggregate Not Viable All
- RT-5.8: IPv6 Link Local
- RT-5.9: Disable IPv6 ND Router Arvetisment
- RT-5.10: IPv6 Link Local generated by SLAAC
- RT-6.1: Core LLDP TLV Population
- RT-7.1: BGP default policies
- RT-7.2: BGP Policy Community Set
- RT-7.3: BGP Policy AS Path Set
- RT-7.4: BGP Policy AS Path Set and Community Set
- RT-7.5: BGP Policy - Match and Set Link Bandwidth Community
- RT-7.8: BGP Policy Match Standard Community and Add Community Import/Export Policy
- RT-7.11: BGP Policy - Import/Export Policy Action Using Multiple Criteria
- RT-14.2: GRIBI Route Test
- SEC-3.1: Authentication
- SFLOW-1: sFlow Configuration and Sampling
- System-1: System testing
- TE-1.1: Static ARP
- TE-1.2: My Station MAC
- TE-2.1: gRIBI IPv4 Entry
- TE-2.2: gRIBI IPv4 Entry With Aggregate Ports
- TE-3.1: Base Hierarchical Route Installation
- TE-3.2: Traffic Balancing According to Weights
- TE-3.3: Hierarchical weight resolution
- TE-3.5: Ordering: ACK Received
- TE-3.6: ACK in the Presence of Other Routes
- TE-3.7: Base Hierarchical NHG Update
- TE-3.31: Hierarchical weight resolution with PBF
- TE-4.1: Base Leader Election
- TE-4.2: Persistence Mode
- TE-5.1: gRIBI Get RPC
- TE-6.1: Route Removal via Flush
- TE-6.2: Route Removal In Non Default VRF
- TE-8.1: DUT Daemon Failure
- TE-8.2: Supervisor Failure
- TE-9.2: MPLS based forwarding Static LSP
- TE-9.3: FIB FAILURE DUE TO HARDWARE RESOURCE EXHAUST
- TE-9: gRIBI MPLS Compliance
- TE-10: gRIBI MPLS Forwarding
- TE-11.1: Backup NHG: Single NH
- TE-11.2: Backup NHG: Multiple NH
- TE-11.3: Backup NHG: Actions
- TE-11.21: Backup NHG: Multiple NH with PBF
- TE-11.31: Backup NHG: Actions with PBF
- TE-13.1: gRIBI route ADD during Failover
- TE-13.2: gRIBI route DELETE during Failover
- TE-14.1: gRIBI Scaling
- TE-14.2: encap and decap scale
- TE-15.1: gRIBI Compliance
- TE-16.1: basic encapsulation tests
- TE-16.2: encapsulation FRR scenarios
- TE-16.3: encapsulation FRR scenarios
- TE-17.1: VRF selection policy driven TE
- TR-6.1: Remote Syslog feature config
- TRANSCEIVER-1: Telemetry: 400ZR Chromatic Dispersion(CD) telemetry values streaming
- TRANSCEIVER-3: Telemetry: 400ZR Optics firmware version streaming
- TRANSCEIVER-4: Telemetry: 400ZR RX input and TX output power telemetry values streaming.
- TRANSCEIVER-5: Configuration: 400ZR channel frequency, output TX launch power and operational mode setting.
- TRANSCEIVER-6: Telemetry: 400ZR Optics performance metrics (pm) streaming.
- TRANSCEIVER-7: Telemetry: 400ZR Optics inventory info streaming
- TRANSCEIVER-8: Telemetry: 400ZR Optics module temperature streaming.
- TRANSCEIVER-9: Telemetry: 400ZR TX laser bias current telemetry values streaming.
- TRANSCEIVER-10: Telemetry: 400ZR Optics FEC(Forward Error Correction) Uncorrectable Frames Streaming.
- TRANSCEIVER-11: Telemetry: 400ZR Optics logical channels provisioning and related telemetry.
- TRANSCEIVER-12: Telemetry: 400ZR Transceiver Supply Voltage streaming.
- TRANSCEIVER-13: Configuration: 400ZR Transceiver Low Power Mode Setting.
- TUN-1.4: Interface based IPv6 GRE Encapsulation
- TUN-1.9: GRE inner packet DSCP
- Test Plans