-
Notifications
You must be signed in to change notification settings - Fork 19
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add tutorial for bootstrapping to the readthedocs documentation
- Loading branch information
1 parent
5a2aaad
commit 21f632c
Showing
2 changed files
with
270 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,269 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"id": "656f7afc", | ||
"metadata": {}, | ||
"source": [ | ||
"# Bootstrapping\n", | ||
"\n", | ||
"In this example, we demonstrate how to perform uncertainty quantification (UQ) using\n", | ||
"bootstrap method. We use a Stillinger-Weber (SW) potential for silicon that is archived\n", | ||
"in OpenKIM_.\n", | ||
"\n", | ||
"For simplicity, we only set the energy-scaling parameters, i.e., ``A`` and ``lambda`` as\n", | ||
"the tunable parameters. These parameters will be calibrated to energies and forces of a\n", | ||
"small dataset, consisting of 4 compressed and stretched configurations of diamond silicon\n", | ||
"structure." | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "98b590d7", | ||
"metadata": {}, | ||
"source": [ | ||
"To start, let's first install the SW model::\n", | ||
"\n", | ||
"$ kim-api-collections-management install user SW_StillingerWeber_1985_Si__MO_405512056662_006\n", | ||
"\n", | ||
".. seealso::\n", | ||
" This installs the model and its driver into the ``User Collection``. See\n", | ||
" :ref:`install_model` for more information about installing KIM models." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "e617de91", | ||
"metadata": { | ||
"ExecuteTime": { | ||
"end_time": "2024-10-07T12:37:31.393276Z", | ||
"start_time": "2024-10-07T12:37:29.472146Z" | ||
} | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import matplotlib.pyplot as plt\n", | ||
"import numpy as np\n", | ||
"\n", | ||
"from kliff.calculators import Calculator\n", | ||
"from kliff.dataset import Dataset\n", | ||
"from kliff.loss import Loss\n", | ||
"from kliff.models import KIMModel\n", | ||
"from kliff.uq.bootstrap import BootstrapEmpiricalModel\n", | ||
"from kliff.utils import download_dataset\n", | ||
"\n", | ||
"%matplotlib inline" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "57f71678", | ||
"metadata": {}, | ||
"source": [ | ||
"Before running bootstrap, we need to define a loss function and train the model. More\n", | ||
"detail information about this step can be found in :ref:`tut_kim_sw` and :ref:`tut_params_transform`." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "a3aa1d13", | ||
"metadata": { | ||
"ExecuteTime": { | ||
"end_time": "2024-10-07T12:37:59.004347Z", | ||
"start_time": "2024-10-07T12:37:58.979490Z" | ||
} | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# Create the model\n", | ||
"model = KIMModel(model_name=\"SW_StillingerWeber_1985_Si__MO_405512056662_006\")\n", | ||
"\n", | ||
"# Set the tunable parameters and the initial guess\n", | ||
"opt_params = {\"A\": [[\"default\"]], \"lambda\": [[\"default\"]]}\n", | ||
"\n", | ||
"model.set_opt_params(**opt_params)\n", | ||
"model.echo_opt_params()\n", | ||
"\n", | ||
"# Get the dataset\n", | ||
"dataset_path = download_dataset(dataset_name=\"Si_training_set_4_configs\")\n", | ||
"# Read the dataset\n", | ||
"tset = Dataset(dataset_path)\n", | ||
"configs = tset.get_configs()\n", | ||
"\n", | ||
"# Create calculator\n", | ||
"calc = Calculator(model)\n", | ||
"# Only use the forces data\n", | ||
"ca = calc.create(configs, use_energy=False, use_forces=True)\n", | ||
"\n", | ||
"# Instantiate the loss function\n", | ||
"residual_data = {\"normalize_by_natoms\": False}\n", | ||
"loss = Loss(calc, residual_data=residual_data)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "39a95904", | ||
"metadata": {}, | ||
"source": [ | ||
"To perform UQ by bootstrapping, the general workflow starts by instantiating :class:`~kliff.uq.bootstrap.BootstrapEmpiricalModel`, or :class:`~kliff.uq.bootstrap.BootstrapNeuralNetworkModel` if using a neural network\n", | ||
"potential." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "966614ab", | ||
"metadata": { | ||
"ExecuteTime": { | ||
"end_time": "2024-10-07T12:38:38.479190Z", | ||
"start_time": "2024-10-07T12:38:38.475357Z" | ||
} | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# Instantiate bootstrap class object\n", | ||
"BS = BootstrapEmpiricalModel(loss, seed=1717)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "b8be6029", | ||
"metadata": {}, | ||
"source": [ | ||
"Then, we generate some bootstrap compute arguments. This is equivalent to generating\n", | ||
"bootstrap data. Typically, we just need to specify how many bootstrap data samples to\n", | ||
"generate. Additionally, if we call ``generate_bootstrap_compute_arguments`` multiple\n", | ||
"times, the new generated data samples will be appended to the previously generated data\n", | ||
"samples. This is also the behavior if we read the data samples from the previously\n", | ||
"exported file." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "e660eb87", | ||
"metadata": { | ||
"ExecuteTime": { | ||
"end_time": "2024-10-07T12:39:14.455217Z", | ||
"start_time": "2024-10-07T12:39:14.442511Z" | ||
} | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# Generate bootstrap compute arguments\n", | ||
"BS.generate_bootstrap_compute_arguments(100)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "898350eb", | ||
"metadata": {}, | ||
"source": [ | ||
"Finally, we will iterate over these bootstrap data samples and train the potential\n", | ||
"using each data sample. The resulting optimal parameters from each data sample give a\n", | ||
"single sample of parameters. By iterating over all data samples, then we will get an\n", | ||
"ensemble of parameters.\n", | ||
"\n", | ||
"Note that the mapping from the bootstrap dataset to the parameters involve optimization.\n", | ||
"We suggest to use the same mapping, i.e., the same optimizer setting, in each iteration.\n", | ||
"This includes using the same set of initial parameter guess. In the case when the loss\n", | ||
"function has multiple local minima, we don't want the parameter ensemble to be biased\n", | ||
"on the results of the other optimizations. For neural network model, we need to reset\n", | ||
"the initial parameter value, which is done internally.\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "d347a576", | ||
"metadata": { | ||
"ExecuteTime": { | ||
"end_time": "2024-10-07T12:39:53.510993Z", | ||
"start_time": "2024-10-07T12:39:48.359289Z" | ||
} | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# Run bootstrap\n", | ||
"min_kwargs = dict(method=\"lm\") # Optimizer setting\n", | ||
"initial_guess = calc.get_opt_params() # Initial guess in the optimization\n", | ||
"BS.run(min_kwargs=min_kwargs, initial_guess=initial_guess)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "e2526a32", | ||
"metadata": {}, | ||
"source": [ | ||
"The resulting parameter ensemble can be accessed in `BS.samples` as a `np.ndarray`.\n", | ||
"Then, we can plot the distribution of the parameters, as an example, or propagate the\n", | ||
"error to the target quantities we want to study." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "e33a7732", | ||
"metadata": { | ||
"ExecuteTime": { | ||
"end_time": "2024-10-07T12:40:23.927758Z", | ||
"start_time": "2024-10-07T12:40:23.759710Z" | ||
} | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"# Plot the distribution of the parameters\n", | ||
"plt.figure()\n", | ||
"plt.plot(*(BS.samples.T), \".\", alpha=0.5)\n", | ||
"param_names = list(opt_params.keys())\n", | ||
"plt.xlabel(param_names[0])\n", | ||
"plt.ylabel(param_names[1])\n", | ||
"plt.show()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "fe68cf9b", | ||
"metadata": {}, | ||
"source": [ | ||
".. _OpenKIM: https://openkim.org" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.12" | ||
}, | ||
"toc": { | ||
"base_numbering": 1, | ||
"nav_menu": {}, | ||
"number_sections": true, | ||
"sideBar": false, | ||
"skip_h1_title": false, | ||
"title_cell": "Table of Contents", | ||
"title_sidebar": "Contents", | ||
"toc_cell": false, | ||
"toc_position": {}, | ||
"toc_section_display": true, | ||
"toc_window_display": false | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |