Skip to content

Commit

Permalink
refactor(tests): update tests to be ConfigSpace compliant
Browse files Browse the repository at this point in the history
  • Loading branch information
simonprovost committed Dec 11, 2023
1 parent f1bb413 commit ee3f6e7
Show file tree
Hide file tree
Showing 12 changed files with 643 additions and 227 deletions.
2 changes: 2 additions & 0 deletions gama/configuration/configuration_task_test/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
from .classifiers import ClassifierConfigTest
from .preprocessors import PreprocessorConfigTest
254 changes: 254 additions & 0 deletions gama/configuration/configuration_task_test/classifiers.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,254 @@
import ConfigSpace as cs
import ConfigSpace.hyperparameters as csh


class ClassifierConfigTest:
def __init__(
self,
config_space: cs.ConfigurationSpace,
):
if "estimators" not in config_space.meta:
raise ValueError("Expected 'estimators' key in meta of config_space")
self.config_space = config_space
self.classifiers_setup_map = {
"BernoulliNB": self.setup_bernoulliNB,
"MultinomialNB": self.setup_multinomialNB,
"GaussianNB": self.setup_gaussianNB,
"DecisionTreeClassifier": self.setup_decision_tree,
"ExtraTreesClassifier": self.setup_extra_trees,
"RandomForestClassifier": self.setup_random_forest,
"GradientBoostingClassifier": self.setup_gradient_boosting,
"KNeighborsClassifier": self.setup_k_neighbors,
"LinearSVC": self.setup_linear_svc,
"LogisticRegression": self.setup_logistic_regression,
}
self.cs_estimators_name = self.config_space.meta["estimators"]

@property
def shared_hyperparameters(self):
return {
"alpha": [1e-3, 1e-2, 1e-1, 1.0, 10.0, 100.0],
"fit_prior": [True, False],
"criterion": ["gini", "entropy"],
"max_depth": {"lower": 1, "upper": 11},
"min_samples_split": {"lower": 2, "upper": 21},
"min_samples_leaf": {"lower": 1, "upper": 21},
"max_features": {"lower": 0.05, "upper": 1.01, "default_value": 1.0},
"n_estimators": [100],
"bootstrap": [True, False],
"dual": [True, False],
"C": [1e-4, 1e-3, 1e-2, 1e-1, 0.5, 1.0, 5.0, 10.0, 15.0, 20.0, 25.0],
}

def setup_classifiers(self):
classifiers_choices = list(self.classifiers_setup_map.keys())

if not classifiers_choices:
raise ValueError("No classifiers to add to config space")

classifiers = csh.CategoricalHyperparameter(
name=self.cs_estimators_name,
choices=classifiers_choices,
)
self.config_space.add_hyperparameter(classifiers)

for classifier_name in classifiers_choices:
if setup_func := self.classifiers_setup_map.get(classifier_name):
setup_func(classifiers)

def _add_hyperparameters_and_equals_conditions(
self, local_vars: dict, estimator_name: str
):
if "classifiers" not in local_vars or not isinstance(
local_vars["classifiers"], csh.CategoricalHyperparameter
):
raise ValueError(
"Expected 'classifiers' key with a CategoricalHyperparameter in local"
"vars"
)

hyperparameters_to_add = [
hyperparameter
for hyperparameter in local_vars.values()
if isinstance(hyperparameter, csh.Hyperparameter)
and hyperparameter != local_vars["classifiers"]
]

conditions_to_add = [
cs.EqualsCondition(
hyperparameter, local_vars["classifiers"], estimator_name
)
for hyperparameter in hyperparameters_to_add
]

self.config_space.add_hyperparameters(hyperparameters_to_add)
self.config_space.add_conditions(conditions_to_add)

def setup_bernoulliNB(self, classifiers: csh.CategoricalHyperparameter):
alpha_NB = csh.CategoricalHyperparameter(
"alpha__BernoulliNB", self.shared_hyperparameters["alpha"]
)
fit_prior = csh.CategoricalHyperparameter(
"fit_prior__BernoulliNB", self.shared_hyperparameters["fit_prior"]
)
self._add_hyperparameters_and_equals_conditions(locals(), "BernoulliNB")

def setup_multinomialNB(self, classifiers: csh.CategoricalHyperparameter):
alpha_NB = csh.CategoricalHyperparameter(
"alpha__MultinomialNB", self.shared_hyperparameters["alpha"]
)
fit_prior = csh.CategoricalHyperparameter(
"fit_prior__MultinomialNB", self.shared_hyperparameters["fit_prior"]
)
self._add_hyperparameters_and_equals_conditions(locals(), "MultinomialNB")

def setup_gaussianNB(self, classifiers: csh.CategoricalHyperparameter):
# GaussianNB has no hyperparameters
pass

def setup_decision_tree(self, classifiers: csh.CategoricalHyperparameter):
criterion = csh.CategoricalHyperparameter(
"criterion__DecisionTreeClassifier",
self.shared_hyperparameters["criterion"],
)
max_depth = csh.UniformIntegerHyperparameter(
"max_depth__DecisionTreeClassifier",
**self.shared_hyperparameters["max_depth"],
)
min_samples_split = csh.UniformIntegerHyperparameter(
"min_samples_split__DecisionTreeClassifier",
**self.shared_hyperparameters["min_samples_split"],
)
min_samples_leaf = csh.UniformIntegerHyperparameter(
"min_samples_leaf__DecisionTreeClassifier",
**self.shared_hyperparameters["min_samples_leaf"],
)
self._add_hyperparameters_and_equals_conditions(
locals(), "DecisionTreeClassifier"
)

def setup_extra_trees(self, classifiers: csh.CategoricalHyperparameter):
criterion = csh.CategoricalHyperparameter(
"criterion__ExtraTreesClassifier", self.shared_hyperparameters["criterion"]
)
max_depth = csh.UniformIntegerHyperparameter(
"max_depth__ExtraTreesClassifier",
**self.shared_hyperparameters["max_depth"],
)
min_samples_split = csh.UniformIntegerHyperparameter(
"min_samples_split__ExtraTreesClassifier",
**self.shared_hyperparameters["min_samples_split"],
)
min_samples_leaf = csh.UniformIntegerHyperparameter(
"min_samples_leaf__ExtraTreesClassifier",
**self.shared_hyperparameters["min_samples_leaf"],
)
max_features = csh.UniformFloatHyperparameter(
"max_features__ExtraTreesClassifier",
**self.shared_hyperparameters["max_features"],
)
n_estimators = csh.CategoricalHyperparameter(
"n_estimators__ExtraTreesClassifier",
self.shared_hyperparameters["n_estimators"],
)
bootstrap = csh.CategoricalHyperparameter(
"bootstrap__ExtraTreesClassifier", self.shared_hyperparameters["bootstrap"]
)
self._add_hyperparameters_and_equals_conditions(
locals(), "ExtraTreesClassifier"
)

def setup_random_forest(self, classifiers: csh.CategoricalHyperparameter):
criterion = csh.CategoricalHyperparameter(
"criterion__RandomForestClassifier",
self.shared_hyperparameters["criterion"],
)
max_depth = csh.UniformIntegerHyperparameter(
"max_depth__RandomForestClassifier",
**self.shared_hyperparameters["max_depth"],
)
min_samples_split = csh.UniformIntegerHyperparameter(
"min_samples_split", **self.shared_hyperparameters["min_samples_split"]
)
min_samples_leaf = csh.UniformIntegerHyperparameter(
"min_samples_leaf", **self.shared_hyperparameters["min_samples_leaf"]
)
max_features = csh.UniformFloatHyperparameter(
"max_features", **self.shared_hyperparameters["max_features"]
)
n_estimators = csh.CategoricalHyperparameter(
"n_estimators__RandomForestClassifier",
self.shared_hyperparameters["n_estimators"],
)
bootstrap = csh.CategoricalHyperparameter(
"bootstrap", self.shared_hyperparameters["bootstrap"]
)
self._add_hyperparameters_and_equals_conditions(
locals(), "RandomForestClassifier"
)

def setup_gradient_boosting(self, classifiers: csh.CategoricalHyperparameter):
sub_sample = csh.CategoricalHyperparameter(
"subsample", [0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
)
learning_rate = csh.CategoricalHyperparameter(
"learning_rate", [1e-3, 1e-2, 1e-1, 0.5, 1.0]
)
max_features = csh.UniformFloatHyperparameter(
"max_features__GradientBoostingClassifier",
**self.shared_hyperparameters["max_features"],
)
n_estimators = csh.CategoricalHyperparameter(
"n_estimators__GradientBoostingClassifier",
self.shared_hyperparameters["n_estimators"],
)
max_depth = csh.UniformIntegerHyperparameter(
"max_depth__GradientBoostingClassifier",
**self.shared_hyperparameters["max_depth"],
)
self._add_hyperparameters_and_equals_conditions(
locals(), "GradientBoostingClassifier"
)

def setup_k_neighbors(self, classifiers: csh.CategoricalHyperparameter):
n_neighbors = csh.UniformIntegerHyperparameter("n_neighbors", 1, 51)
weights = csh.CategoricalHyperparameter("weights", ["uniform", "distance"])
p = csh.UniformIntegerHyperparameter("p", 1, 2)
self._add_hyperparameters_and_equals_conditions(
locals(), "KNeighborsClassifier"
)

def setup_linear_svc(self, classifiers: csh.CategoricalHyperparameter):
loss = csh.CategoricalHyperparameter(
"loss__LinearSVC", ["hinge", "squared_hinge"]
)
penalty = csh.CategoricalHyperparameter("penalty__LinearSVC", ["l1", "l2"])
dual = csh.CategoricalHyperparameter(
"dual__LinearSVC", self.shared_hyperparameters["dual"]
)
tol = csh.CategoricalHyperparameter(
"tol__LinearSVC", [1e-5, 1e-4, 1e-3, 1e-2, 1e-1]
)
C = csh.CategoricalHyperparameter(
"C__LinearSVC", self.shared_hyperparameters["C"]
)
self._add_hyperparameters_and_equals_conditions(locals(), "LinearSVC")

# Forbidden clause: Penalty 'l1' cannot be used with loss 'hinge'
forbidden_penalty_loss = cs.ForbiddenAndConjunction(
cs.ForbiddenEqualsClause(self.config_space["penalty__LinearSVC"], "l1"),
cs.ForbiddenEqualsClause(self.config_space["loss__LinearSVC"], "hinge"),
)
self.config_space.add_forbidden_clause(forbidden_penalty_loss)

def setup_logistic_regression(self, classifiers: csh.CategoricalHyperparameter):
penalty = csh.CategoricalHyperparameter(
"penalty__LogisticRegression", ["l1", "l2"]
)
C = csh.CategoricalHyperparameter(
"C__LogisticRegression", self.shared_hyperparameters["C"]
)
dual = csh.CategoricalHyperparameter(
"dual__LogisticRegression", self.shared_hyperparameters["dual"]
)
self._add_hyperparameters_and_equals_conditions(locals(), "LogisticRegression")
Loading

0 comments on commit ee3f6e7

Please sign in to comment.