Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[XLA:GPU] Fix reduce scatter transfered bytes. #21197

Merged
merged 1 commit into from
Jan 10, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 21 additions & 3 deletions xla/service/gpu/model/gpu_hlo_cost_analysis.cc
Original file line number Diff line number Diff line change
Expand Up @@ -503,12 +503,13 @@ absl::Status GpuHloCostAnalysis::HandleAsyncStart(const HloInstruction* hlo) {
VLOG(2) << "Only Reduce Scatter is supported.";
return absl::OkStatus();
}
int index_to_skip = 1;
int64_t output_bytes_accessed = 0;
ShapeUtil::ForEachLeafShape(
hlo->shape(), [&](const Shape& subshape, const ShapeIndex& index) {
// Skip first element of a tuple as it expresses the input of the
// collective operation.
if (index.empty() || index.front() == 0) {
// Skip second element of a tuple as it is an output but it is not
// actual bytes transferred.
if (index.empty() || index.front() == index_to_skip) {
return;
}
if (subshape.IsArray()) {
Expand All @@ -520,6 +521,23 @@ absl::Status GpuHloCostAnalysis::HandleAsyncStart(const HloInstruction* hlo) {
return absl::OkStatus();
}

absl::Status GpuHloCostAnalysis::HandleReduceScatter(
const HloInstruction* hlo) {
int64_t output_bytes_accessed = 0;

for (auto* operand : hlo->operands()) {
ShapeUtil::ForEachLeafShape(
operand->shape(), [&](const Shape& subshape, const ShapeIndex& index) {
if (subshape.IsArray()) {
output_bytes_accessed += GetShapeSize(subshape);
}
});
}
current_properties_.set_output_bytes_accessed(output_bytes_accessed);

return absl::OkStatus();
}

absl::Status GpuHloCostAnalysis::HandleElementwiseOp(
const HloInstruction* hlo) {
current_properties_[kFlopsKey] = GetFlopsForElementwiseOp(hlo);
Expand Down
1 change: 1 addition & 0 deletions xla/service/gpu/model/gpu_hlo_cost_analysis.h
Original file line number Diff line number Diff line change
Expand Up @@ -76,6 +76,7 @@ class GpuHloCostAnalysis : public HloCostAnalysis {
absl::Status HandleAllGather(const HloInstruction* hlo) override;
absl::Status HandleAllGatherStart(const HloInstruction* hlo) override;
absl::Status HandleAsyncStart(const HloInstruction* hlo) override;
absl::Status HandleReduceScatter(const HloInstruction* hlo) override;

// Estimate the total size of IR accounting for both duplication
// of producer code by consumer and the total number of basic blocks.
Expand Down
27 changes: 26 additions & 1 deletion xla/service/gpu/model/gpu_hlo_cost_analysis_test.cc
Original file line number Diff line number Diff line change
Expand Up @@ -709,6 +709,31 @@ ENTRY entry_computation {
EXPECT_EQ(analysis_.output_bytes_accessed(*all_gather), 4096 * 4 + 2048 * 4);
}

TEST_F(GpuHloCostAnalysisTest, ReduceScatter) {
absl::string_view hlo_string = R"(
HloModule m

add {
param_0 = f32[] parameter(0)
param_1 = f32[] parameter(1)
ROOT t = f32[] add(param_0, param_1)
}

ENTRY entry_computation {
p = f32[4096] parameter(0)
ROOT _ = f32[1024] reduce-scatter(p), dimensions={0}, to_apply=add
}
)";
TF_ASSERT_OK_AND_ASSIGN(auto module,
ParseAndReturnVerifiedModule(hlo_string));

ASSERT_IS_OK(module->entry_computation()->Accept(&analysis_));

const HloInstruction* reduce_scatter =
module->entry_computation()->root_instruction();
EXPECT_EQ(analysis_.output_bytes_accessed(*reduce_scatter), 4096 * 4);
}

TEST_F(GpuHloCostAnalysisTest, AsyncReduceScatter) {
absl::string_view hlo_string = R"(
HloModule m
Expand Down Expand Up @@ -743,7 +768,7 @@ ENTRY entry_computation {
module->entry_computation()->root_instruction()->operand(0);
// Output is (f32[1024],f32[512]).
EXPECT_EQ(analysis_.output_bytes_accessed(*reduce_scatter),
1024 * 4 + 512 * 4);
4096 * 4 + 2048 * 4);
}

TEST_F(GpuHloCostAnalysisTest, CustomOpProfileIsUsed) {
Expand Down
31 changes: 31 additions & 0 deletions xla/service/gpu/model/sol_latency_estimator_test.cc
Original file line number Diff line number Diff line change
Expand Up @@ -137,10 +137,41 @@ ENTRY main {
/*expected_latency=*/absl::Microseconds(1323),
};

EstimatorTestCase reduce_scatter_all_ranks = {
/*test_name=*/"reduce_scatter_all_ranks",
/*module_string=*/R"(
HloModule m

add {
param_0 = bf16[] parameter(0)
param_1 = bf16[] parameter(1)
ROOT t = bf16[] add(param_0, param_1)
}

async_comp {
param_3 = bf16[8192,128256] parameter(0)
ROOT r = bf16[64,128256] reduce-scatter(param_3),
dimensions={0},
to_apply=add,
replica_groups=[1,128]<=[128],
channel_id=1,
use_global_device_ids=true
}

ENTRY main {
p = bf16[8192,128256] parameter(0)
rs-start = ((bf16[8192,128256]), bf16[64,128256]) async-start(p), calls=async_comp
ROOT rs-done = bf16[64,128256] async-done(rs-start)
})",
/*opcode=*/HloOpcode::kAsyncStart,
/*expected_latency=*/absl::Microseconds(10525),
};

return {
all_gather_intra_host,
all_gather_inter_host_pairwise,
all_gather_all_ranks,
reduce_scatter_all_ranks,
};
}

Expand Down
Loading