Skip to content

ordino-ai/MASS

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MASS(Muscle-Actuated Skeletal System)

Teaser

Abstract

This code implements a basic simulation and control for full-body Musculoskeletal system. Skeletal movements are driven by the actuation of the muscles, coordinated by activation levels. Interfacing with python and pytorch, it is available to use Deep Reinforcement Learning(DRL) algorithm such as Proximal Policy Optimization(PPO).

Publications

Seunghwan Lee, Kyoungmin Lee, Moonseok Park, and Jehee Lee Scalable Muscle-actuated Human Simulation and Control, ACM Transactions on Graphics (SIGGRAPH 2019), Volume 37, Article 73.

Project Page : http://mrl.snu.ac.kr/research/ProjectScalable/Page.htm

Youtube : https://youtu.be/a3jfyJ9JVeM

Paper : http://mrl.snu.ac.kr/research/ProjectScalable/Paper.pdf

How to install

Install TinyXML, Eigen, OpenGL, assimp, Python3, etc...

sudo apt-get install libtinyxml-dev libeigen3-dev libxi-dev libxmu-dev freeglut3-dev libassimp-dev libpython3-dev python3-tk python3-numpy virtualenv ipython3 cmake-curses-gui

Install boost with python3 (1.66)

We strongly recommand that you install boost libraries from the source code (not apt-get, etc...).

cd /path/to/boost_1_xx/
./bootstrap.sh --with-python=python3
sudo ./b2 --with-python --with-filesystem --with-system --with-regex install
  • Check yourself that the libraries are installed well in your directory /usr/local/. (or /usr/)

If installed successfully, you should have something like

Include

  • /usr/local/include/boost/
  • /usr/local/include/boost/python/
  • /usr/local/include/boost/python/numpy

Lib

  • /usr/local/lib/libboost_filesystem.so
  • /usr/local/lib/libboost_python3.so
  • /usr/local/lib/libboost_numpy3.so

Install DART 6.3

Please refer to http://dartsim.github.io/ (Install version 6.3)

Install PIP things

You should first activate virtualenv.

virtualenv /path/to/venv --python=python3
source /path/to/venv/bin/activate
pip3 install http://download.pytorch.org/whl/cpu/torch-0.4.1-cp35-cp35m-linux_x86_64.whl 
pip3 install torchvision
  • numpy, matplotlib
pip3 install numpy matplotlib ipython

How to compile and run

Resource

Our system require a reference motion to imitate. We provide sample references such as walking, running, and etc...

To learn and simulate, we should provide such a meta data. We provide default meta data in /data/metadata.txt. We parse the text and set the environment. Please note that the learning settings and the test settings should be equal.(metadata.txt should not be changed.)

Compile and Run

mkdir build
cd build
cmake .. 
make -j8
  • Run Training
cd python
source /path/to/virtualenv/
python3 main.py -d ../data/metadata.txt

All the training networks are saved in /nn folder.

  • Run UI
source /path/to/virtualenv/
./render/render ../data/metadata.txt
  • Run Trained data
source /path/to/virtualenv/
./render/render ../data/metadata.txt ../nn/xxx.pt ../nn/xxx_muscle.pt

If you are simulating with the torque-actuated model,

source /path/to/virtualenv/
./render/render ../data/metadata.txt ../nn/xxx.pt

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • CMake 50.1%
  • C++ 41.3%
  • Python 8.6%