-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add PyCafe Styling Gallery to the README.
- Loading branch information
Showing
2 changed files
with
220 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,217 @@ | ||
import json | ||
import re | ||
import pandas as pd | ||
import numpy as np | ||
import solara | ||
from buckaroo.solara_buckaroo import SolaraDFViewer | ||
|
||
float_col = [5, -8, 13.23, -8.01, -999.345245234, None] | ||
float_df = pd.DataFrame({ | ||
'float_obj_displayer': float_col, | ||
'float_float_displayer_1__3': float_col, | ||
'float_float_displayer_0__3': float_col, | ||
'float_float_displayer_3__3': float_col, | ||
'float_float_displayer_3_13': float_col}) | ||
|
||
def float_col_conf(min_digits, max_digits): | ||
return {'displayer_args': { 'displayer': 'float', 'min_fraction_digits':min_digits, 'max_fraction_digits': max_digits}} | ||
|
||
float_config = { | ||
'float_obj_displayer': {'displayer_args': {'displayer': 'obj'}}, | ||
'float_float_displayer_1__3' : float_col_conf(1,3), | ||
'float_float_displayer_0__3' : float_col_conf(0,3), | ||
'float_float_displayer_3__3' : float_col_conf(3,3), | ||
'float_float_displayer_3_13' : float_col_conf(3,13)} | ||
|
||
|
||
base_str_col = ["asdf", "qwerty", "really long string, much much longer", | ||
None, "A"] | ||
|
||
str_df = pd.DataFrame({ | ||
'strings_string_displayer_max_len': base_str_col, | ||
'strings_obj_displayer': base_str_col, | ||
'strings_string_displayer': base_str_col, | ||
}) | ||
str_config = { | ||
'strings_string_displayer_max_len': {'displayer_args': {'displayer': 'string', 'max_length':35}}, | ||
'strings_obj_displayer': {'displayer_args': {'displayer': 'obj'}}, | ||
'strings_string_displayer': {'displayer_args': {'displayer': 'string'}}, | ||
} | ||
|
||
|
||
ts_col = ["2020-01-01 01:00Z", "2020-01-01 02:00Z", "2020-02-28 02:00Z", "2020-03-15 02:00Z", None] | ||
datetime_df = pd.DataFrame( | ||
{'timestamp':ts_col, | ||
'timestamp_obj_displayer':ts_col, | ||
'timestamp_datetime_default_displayer':ts_col, | ||
'timestamp_datetime_locale_en-US':ts_col, | ||
'timestamp_datetime_locale_en-US-Long':ts_col, | ||
'timestamp_datetime_locale_en-GB':ts_col}) | ||
|
||
|
||
def locale_col_conf(locale, args={}): | ||
return {'displayer_args': {'displayer': 'datetimeLocaleString', | ||
'locale':locale, | ||
'args':args}} | ||
datetime_config = { | ||
'timestamp_obj_displayer': {'displayer_args': {'displayer': 'obj'}}, | ||
'timestamp_datetime_default_displayer' : {'displayer_args': { 'displayer': 'datetimeDefault'}}, | ||
'timestamp_datetime_locale_en-US' :locale_col_conf('en-US'), | ||
'timestamp_datetime_locale_en-US-Long': locale_col_conf('en-US', { 'weekday': 'long'}), | ||
'timestamp_datetime_locale_en-GB' : locale_col_conf('en-GB')} | ||
|
||
link_df = pd.DataFrame({'raw': ['https://github.com/paddymul/buckaroo', 'https://github.com/pola-rs/polars'], | ||
'linkify' : ['https://github.com/paddymul/buckaroo', 'https://github.com/pola-rs/polars']}) | ||
link_config = {'linkify': {'displayer_args': { 'displayer': 'linkify'}}} | ||
|
||
#fixme no underline or blue highlighting of links... but they are links | ||
|
||
|
||
# I pulled this out into a separate variable so we can eventually | ||
# display it in a spearate code block | ||
histogram_data = ['histogram', | ||
[{'name': 'NA', 'NA': 100.0}], | ||
[{'name': 1, 'cat_pop': 44.0}, {'name': 'NA', 'NA': 56.0}], | ||
[{'name': 'long_97', 'cat_pop': 0.0}, | ||
{'name': 'long_139', 'cat_pop': 0.0}, | ||
{'name': 'long_12', 'cat_pop': 0.0}, | ||
{'name': 'long_134', 'cat_pop': 0.0}, | ||
{'name': 'long_21', 'cat_pop': 0.0}, | ||
{'name': 'long_44', 'cat_pop': 0.0}, | ||
{'name': 'long_58', 'cat_pop': 0.0}, | ||
{'name': 'longtail', 'longtail': 77.0}, | ||
{'name': 'NA', 'NA': 20.0}], | ||
[{'name': 'long_113', 'cat_pop': 0.0}, | ||
{'name': 'long_116', 'cat_pop': 0.0}, | ||
{'name': 'long_33', 'cat_pop': 0.0}, | ||
{'name': 'long_72', 'cat_pop': 0.0}, | ||
{'name': 'long_122', 'cat_pop': 0.0}, | ||
{'name': 'long_6', 'cat_pop': 0.0}, | ||
{'name': 'long_83', 'cat_pop': 0.0}, | ||
{'name': 'longtail', 'unique': 50.0, 'longtail': 47.0}]] | ||
histogram_df = pd.DataFrame({ | ||
'names': ['index', 'all_NA', 'half_NA', 'longtail', 'longtail_unique'], | ||
'histogram_props': histogram_data}) | ||
|
||
histogram_config={ | ||
'histogram_props': {'displayer_args': {'displayer': 'histogram'}}} | ||
|
||
png_smiley = 'iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAApgAAAKYB3X3/OAAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAANCSURBVEiJtZZPbBtFFMZ/M7ubXdtdb1xSFyeilBapySVU8h8OoFaooFSqiihIVIpQBKci6KEg9Q6H9kovIHoCIVQJJCKE1ENFjnAgcaSGC6rEnxBwA04Tx43t2FnvDAfjkNibxgHxnWb2e/u992bee7tCa00YFsffekFY+nUzFtjW0LrvjRXrCDIAaPLlW0nHL0SsZtVoaF98mLrx3pdhOqLtYPHChahZcYYO7KvPFxvRl5XPp1sN3adWiD1ZAqD6XYK1b/dvE5IWryTt2udLFedwc1+9kLp+vbbpoDh+6TklxBeAi9TL0taeWpdmZzQDry0AcO+jQ12RyohqqoYoo8RDwJrU+qXkjWtfi8Xxt58BdQuwQs9qC/afLwCw8tnQbqYAPsgxE1S6F3EAIXux2oQFKm0ihMsOF71dHYx+f3NND68ghCu1YIoePPQN1pGRABkJ6Bus96CutRZMydTl+TvuiRW1m3n0eDl0vRPcEysqdXn+jsQPsrHMquGeXEaY4Yk4wxWcY5V/9scqOMOVUFthatyTy8QyqwZ+kDURKoMWxNKr2EeqVKcTNOajqKoBgOE28U4tdQl5p5bwCw7BWquaZSzAPlwjlithJtp3pTImSqQRrb2Z8PHGigD4RZuNX6JYj6wj7O4TFLbCO/Mn/m8R+h6rYSUb3ekokRY6f/YukArN979jcW+V/S8g0eT/N3VN3kTqWbQ428m9/8k0P/1aIhF36PccEl6EhOcAUCrXKZXXWS3XKd2vc/TRBG9O5ELC17MmWubD2nKhUKZa26Ba2+D3P+4/MNCFwg59oWVeYhkzgN/JDR8deKBoD7Y+ljEjGZ0sosXVTvbc6RHirr2reNy1OXd6pJsQ+gqjk8VWFYmHrwBzW/n+uMPFiRwHB2I7ih8ciHFxIkd/3Omk5tCDV1t+2nNu5sxxpDFNx+huNhVT3/zMDz8usXC3ddaHBj1GHj/As08fwTS7Kt1HBTmyN29vdwAw+/wbwLVOJ3uAD1wi/dUH7Qei66PfyuRj4Ik9is+hglfbkbfR3cnZm7chlUWLdwmprtCohX4HUtlOcQjLYCu+fzGJH2QRKvP3UNz8bWk1qMxjGTOMThZ3kvgLI5AzFfo379UAAAAASUVORK5CYII=' | ||
|
||
img_df = pd.DataFrame({'raw': [png_smiley, None], | ||
'img_displayer' : [png_smiley, None]}) | ||
img_config = { | ||
'raw': {'displayer_args': {'displayer': 'string', 'max_length':40}}, | ||
'img_displayer': {'displayer_args': {'displayer': 'Base64PNGImageDisplayer'}, | ||
'ag_grid_specs' : {'width':150}}} | ||
|
||
ROWS = 200 | ||
#the next dataframe is used for multiple examples | ||
typed_df = pd.DataFrame( | ||
{'int_col':np.random.randint(1,50, ROWS), | ||
'float_col': np.random.randint(1,30, ROWS)/.7, | ||
"str_col": ["foobar"]* ROWS}) | ||
tooltip_config = { | ||
'str_col': | ||
{'tooltip_config': { 'tooltip_type':'simple', 'val_column': 'int_col'}}} | ||
|
||
colormap_config = { | ||
'float_col': {'color_map_config': { | ||
'color_rule': 'color_map', | ||
'map_name': 'BLUE_TO_YELLOW', | ||
}}} | ||
|
||
error_df = pd.DataFrame({ | ||
'a': [10, 20, 30], | ||
'err_messages': [None, "a must be less than 19, it is 20", "a must be less than 19, it is 30"]}) | ||
|
||
error_config = { | ||
'a': {'color_map_config': { | ||
'color_rule': 'color_not_null', | ||
'conditional_color': 'red', | ||
'exist_column': 'err_messages'}}} | ||
|
||
color_df = pd.DataFrame({ | ||
'a': [10, 20, 30], | ||
'a_colors': ['red', '#d3a', 'green']}) | ||
|
||
color_from_col_config={ | ||
'a': { 'color_map_config': { | ||
'color_rule': 'color_from_column', | ||
'col_name': 'a_colors'}}} | ||
|
||
configs = {"str_config" : (str_df, str_config), | ||
"float_config": (float_df, float_config), | ||
"datetime_config": (datetime_df, datetime_config), | ||
"link_config": (link_df, link_config), | ||
"histogram_config": (histogram_df, histogram_config), | ||
"img_config": (img_df, img_config), | ||
"tooltip_config": (typed_df, tooltip_config), | ||
"colormap_config": (typed_df, colormap_config), | ||
"error_config": (error_df, error_config), | ||
"color_from_col_config": (color_df, color_from_col_config), | ||
|
||
} | ||
|
||
active_config = solara.reactive("float_config") | ||
|
||
gallery_css = """ | ||
.dfviewer-widget {min-width:70vw} | ||
span.span { background: red;} | ||
.config-select {width:300px; } | ||
""" | ||
|
||
|
||
def format_json(obj): | ||
""" | ||
Formats obj to json string to remove unnecessary whitespace. | ||
Returns: | ||
The formatted JSON string. | ||
""" | ||
json_string = json.dumps(obj, indent=4) | ||
# Remove whitespace before closing curly braces | ||
formatted_string = re.sub(r'\s+}', '}', json_string) | ||
|
||
return formatted_string | ||
|
||
@solara.component | ||
def Page(): | ||
#solara.Style(Path("gallery.css")) | ||
solara.Style(gallery_css) | ||
solara.Markdown(""" | ||
# Buckaroo Styling Gallery | ||
Select a config, and view the output. Each dataframe has multiple columns with the exact same values. The display differs because of the column config applied. | ||
""") | ||
solara.Select(label="Config", | ||
value=active_config, | ||
values=list(configs.keys()), | ||
dense=True, | ||
classes=["config-select"] | ||
) | ||
|
||
conf = configs[active_config.value] | ||
formatted_conf = format_json(conf[1]) #json.dumps(conf[1], indent=4) | ||
|
||
json_code = f""" | ||
```python | ||
{formatted_conf} | ||
```""" | ||
|
||
with solara.HBox(): | ||
|
||
|
||
with solara.Column(gap="10px"): | ||
solara.Text("Column Config") | ||
solara.Markdown(json_code, style="min-width:400px;") | ||
with solara.Column(gap="10px"): | ||
solara.Text("Buckaroo Widget") | ||
|
||
SolaraDFViewer(df=conf[0], | ||
column_config_overrides = conf[1], | ||
pinned_rows=[] | ||
) | ||
|
||
|