forked from fatPeter/mini-splatting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathteaser.py
136 lines (88 loc) · 4.01 KB
/
teaser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import torch
from scene import Scene
from gaussian_renderer import render
from utils.general_utils import safe_state
from argparse import ArgumentParser
from arguments import ModelParams, PipelineParams, get_combined_args
from gaussian_renderer import GaussianModel
import numpy as np
from utils.sh_utils import SH2RGB
from scene.cameras import Camera
from PIL import Image, ImageDraw
def transformPoint4x4(p_orig, projmatrix):
p_hom = torch.matmul(p_orig, projmatrix[:3])+projmatrix[3:4]
return p_hom
def ndc2Pix(v, S):
return ((v + 1.0) * S - 1.0) * 0.5
def draw_points_on_image(points, colors, image, size=1):
image[image>1]=1
image[image<0]=0
image = Image.fromarray((image*255).astype(np.uint8))
draw = ImageDraw.Draw(image)
for point, color in zip(points, colors):
x = point[0]
y = point[1]
r, g, b = color
draw.ellipse((x-size,y-size,x+size,y+size), fill=(int(r), int(g), int(b)))
image.show()
return image
def proj_points(view, gaussians, pipeline, background):
# tune cam_center and cam_rot to find a suitable camera pose
cam_center=np.array([0.1, -0.5, 0.7])
cam_rot=view.R
# tune aabb box mask to extract foreground points
aabb = np.array([[-1.6, -1.6, -1.6],
[1.6, 1.6, 1.6]])
# render image
view_reset = Camera(colmap_id=view.colmap_id, R=cam_rot, T=cam_center,
FoVx=view.FoVx, FoVy=view.FoVy,
image=view.original_image, gt_alpha_mask=None,
image_name=view.image_name, uid=view.uid)
render_pkg = render(view_reset, gaussians, pipeline, background)
rendering = render_pkg["render"]
# extract foreground
aabb_min = aabb[0]
aabb_max = aabb[1]
xyz = gaussians._xyz+0
rgb = SH2RGB(gaussians._features_dc+0)[:,0]
aabb_mask = (xyz[:, 0] >= aabb_min[0]) & (xyz[:, 0] <= aabb_max[0]) & \
(xyz[:, 1] >= aabb_min[1]) & (xyz[:, 1] <= aabb_max[1]) & \
(xyz[:, 2] >= aabb_min[2]) & (xyz[:, 2] <= aabb_max[2])
xyz = xyz[aabb_mask]
rgb = rgb[aabb_mask]
# perspective projection (modified from cuda code)
full_proj_transform = view_reset.full_proj_transform
p_hom = transformPoint4x4(xyz, full_proj_transform)
p_w = 1.0 / (p_hom[:,3] + 0.0000001)
p_proj = p_hom[:,:3]*p_w[:,None]
point_image = ndc2Pix(p_proj[:,0], rendering.shape[2]), \
ndc2Pix(p_proj[:,1], rendering.shape[1])
point_image=torch.cat((point_image[0][:,None], point_image[1][:,None]), -1)
points = point_image.detach().cpu().numpy()
colors = rgb.detach().cpu().numpy()
# tune point size for better visualization 0.3, 0.3, 1.2
image_proj = draw_points_on_image(points, np.zeros(colors.shape)+[0,0,255], rendering.permute(1,2,0).detach().cpu().numpy(), size=0.3)
return
def render_teaser(dataset : ModelParams, iteration : int, pipeline : PipelineParams):
with torch.no_grad():
gaussians = GaussianModel(dataset.sh_degree)
scene = Scene(dataset, gaussians, load_iteration=iteration, shuffle=False)
view = scene.getTrainCameras()[0]
bg_color = [1,1,1]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
proj_points(view, gaussians, pipeline, background)
if __name__ == "__main__":
# Set up command line argument pars
parser = ArgumentParser(description="Testing script parameters")
model = ModelParams(parser, sentinel=True)
pipeline = PipelineParams(parser)
parser.add_argument("--iteration", default=-1, type=int)
parser.add_argument("--skip_train", action="store_true")
parser.add_argument("--skip_test", action="store_true")
parser.add_argument("--quiet", action="store_true")
args = get_combined_args(parser)
print("Rendering " + args.model_path)
print("Rendering source_path " + args.source_path)
# Initialize system state (RNG)
safe_state(args.quiet)
render_teaser(model.extract(args), args.iteration, pipeline.extract(args))