This repository contains research and tools for working with Neural Radiance Fields (NeRF) using current methods.
-
Clone the repository (including submodules):
git clone --recursive https://github.com/patriklabs/nerf-research.git
-
Build the COLMAP Docker image:
cd colmap && ./build_docker.sh
-
Create a sparse reconstruction of a dataset:
Run COLMAP on your data to generate a sparse reconstruction by specifying the path to your dataset:
cd colmap && ./docker_run.sh /path/to/data
-
Prepare Configuration:
- Add or update a configuration file in the
config
folder to specify your training parameters.
- Add or update a configuration file in the
-
Build and Run the Docker Image:
-
Build the Docker image:
./docker/build.sh
-
Start a training session:
./docker/run.sh /path/to/dataset /path/to/config.yaml
-
Optional: To export a 3D mesh, specify a checkpoint file and add the
--visualize
flag:./docker/run.sh /path/to/dataset /path/to/config.yaml /path/to/ckpt --visualize
Example:
./docker/run.sh /database config/nerf_config.yaml
-
-
Set Up VSCode and Dev Containers:
- Download and install VSCode if not already installed.
- Install the Dev Containers extension in VSCode.
-
Configure DevContainer:
-
Update
devcontainer.json
to map your local data directory to the/database
folder inside the container:"runArgs": [ "-v=/path/to/database:/database:rw",
-
-
Run Training and Visualization Tasks:
- Update or add a configuration file in the
config
folder. - Launch the NeRF Training task to start training.
- To export a 3D mesh, use the NeRF Visualization task.
- Update or add a configuration file in the