Skip to content

Commit

Permalink
getting started vignette
Browse files Browse the repository at this point in the history
  • Loading branch information
matthewjdenny committed Sep 18, 2016
1 parent c6152fd commit 71109fd
Show file tree
Hide file tree
Showing 4 changed files with 928 additions and 0 deletions.
108 changes: 108 additions & 0 deletions inst/doc/getting_started.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,108 @@
## ----eval=FALSE----------------------------------------------------------
# install.packages("GERGM")

## ----eval=FALSE----------------------------------------------------------
# install.packages("devtools")

## ----eval=FALSE----------------------------------------------------------
# devtools::install_github("matthewjdenny/GERGM")

## ----eval=FALSE----------------------------------------------------------
# install.packages( pkgs = c("BH","RcppArmadillo","ggplot2","methods",
# "stringr","igraph", "plyr", "parallel", "coda", "vegan", "scales",
# "RcppParallel","slackr"), dependencies = TRUE)

## ----eval=FALSE----------------------------------------------------------
# library(GERGM)

## ----eval=TRUE, fig.width=6, fig.height=6, fig.align ='center'-----------
library(GERGM)
set.seed(12345)
data("lending_2005")
data("covariate_data_2005")
data("net_exports_2005")
plot_network(lending_2005)

## ----eval=TRUE, fig.width=7, fig.height=5.5------------------------------
head(covariate_data_2005)

## ----eval=TRUE, echo=TRUE, fig.width=7, fig.height=3.5, results='hide', message=FALSE----
formula <- lending_2005 ~ edges + mutual(alpha = 0.8) + sender("log_GDP") +
receiver("log_GDP") + nodemix("G8", base = "No") + netcov(net_exports_2005)

## ----eval=TRUE, echo=TRUE, fig.width=8, fig.height=3.5, results='hide', message=FALSE, fig.align ='center'----
test <- gergm(formula,
covariate_data = covariate_data_2005,
number_of_networks_to_simulate = 40000,
thin = 1/100,
proposal_variance = 0.05,
MCMC_burnin = 10000,
seed = 456,
convergence_tolerance = 0.5)

## ----eval=FALSE----------------------------------------------------------
# # Generate Estimate Plot
# Estimate_Plot(test)
# # Generate GOF Plot
# GOF(test)
# # Generate Trace Plot
# Trace_Plot(test)

## ----eval=TRUE, echo=TRUE, fig.width=6.5, fig.height=3, results='hide', message=FALSE, fig.align ='center'----
Estimate_Plot(test,
coefficients_to_plot = "both",
coefficient_names = c("Mutual Dyads",
"log(GDP) Sender",
"log(GDP) Receiver",
"Non-G8 Sender, G8 Receiver",
"G8 Sender, Non-G8 Receiver",
"G8 Sender, G8 Receiver",
"intercept",
"Normalized Net Exports",
"Dispersion Parameter"),
leave_out_coefficients = "intercept")

## ----eval=TRUE, echo=TRUE, fig.width=5, fig.height=5, results='hide', message=FALSE, fig.align ='center'----
# Generate Hysteresis plots for all structural parameter estimates
hysteresis_results <- hysteresis(test,
networks_to_simulate = 1000,
burnin = 300,
range = 8,
steps = 20,
simulation_method = "Metropolis",
proposal_variance = 0.05)

## ----eval=TRUE, echo=TRUE, results='hide', message=FALSE-----------------
test2 <- conditional_edge_prediction(
GERGM_Object = test,
number_of_networks_to_simulate = 100,
thin = 1,
proposal_variance = 0.05,
MCMC_burnin = 100,
seed = 123)

## ----eval=TRUE-----------------------------------------------------------
MSE_results <- conditional_edge_prediction_MSE(test2)

## ----eval=FALSE----------------------------------------------------------
# formula <- net ~ mutual(0.8) + ttriads(0.8) + out2stars(0.8) +
# sender("log_GDP") + netcov(net_exports) +
# receiver("log_GDP") + nodemix("G8", base = "No")
#
#
# result <- gergm(formula,
# covariate_data = covariate_data_2005,
# number_of_networks_to_simulate = 400000,
# thin = 1/100,
# proposal_variance = 0.05,
# MCMC_burnin = 200000,
# seed = 456,
# convergence_tolerance = 0.8,
# hyperparameter_optimization = TRUE,
# target_accept_rate = 0.25,
# weighted_MPLE = TRUE,
# theta_grid_optimization_list = list(grid_steps = 2,
# step_size = 0.1,
# cores = 30,
# iteration_fraction = 1))

Loading

0 comments on commit 71109fd

Please sign in to comment.