Skip to content

Springer has released hundreds of free books on a wide range of topics to the general public.

License

Notifications You must be signed in to change notification settings

pchandiwal-livongo/datascience_books

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Datascience Book Collection

Springer has released hundreds of free books on a wide range of topics to the general public. The list, which includes 408 books in total, covers a wide range of scientific and technological topics. In order to save you some time, I have created one list of all the books (65 in number) that are relevant to the data and Machine Learning field. Among the books, you will find those dealing with the mathematical side of the domain (Algebra, Statistics, and more), along with more advanced books on Deep Learning and other advanced topics.

The 65 books list:
The Elements of Statistical Learning
Trevor Hastie, Robert Tibshirani, Jerome Friedman

Introductory Time Series with R
Paul S.P. Cowpertwait, Andrew V. Metcalfe

A Beginner’s Guide to R
Alain Zuur, Elena N. Ieno, Erik Meesters

Introduction to Evolutionary Computing
A.E. Eiben, J.E. Smith

Data Analysis
Siegmund Brandt

Linear and Nonlinear Programming
David G. Luenberger, Yinyu Ye

Introduction to Partial Differential Equations
David Borthwick

Fundamentals of Robotic Mechanical Systems
Jorge Angeles

Data Structures and Algorithms with Python
Kent D. Lee, Steve Hubbard

Introduction to Partial Differential Equations
Peter J. Olver

Methods of Mathematical Modelling
Thomas Witelski, Mark Bowen

Introduction to Statistics and Data Analysis
Christian Heumann, Michael Schomaker, Shalabh

Principles of Data Mining
Max Bramer

Computer Vision
Richard Szeliski

Data Mining
Charu C. Aggarwal

Computational Geometry
Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars

Robotics, Vision and Control
Peter Corke

Statistical Analysis and Data Display
Richard M. Heiberger, Burt Holland

Statistics and Data Analysis for Financial Engineering
David Ruppert, David S. Matteson

Stochastic Processes and Calculus
Uwe Hassler

Statistical Analysis of Clinical Data on a Pocket Calculator
Ton J. Cleophas, Aeilko H. Zwinderman

Clinical Data Analysis on a Pocket Calculator
Ton J. Cleophas, Aeilko H. Zwinderman

The Data Science Design Manual
Steven S. Skiena

An Introduction to Machine Learning
Miroslav Kubat

Guide to Discrete Mathematics
Gerard O’Regan

Introduction to Time Series and Forecasting
Peter J. Brockwell, Richard A. Davis

Multivariate Calculus and Geometry
Seán Dineen

Statistics and Analysis of Scientific Data
Massimiliano Bonamente

Modelling Computing Systems
Faron Moller, Georg Struth

Search Methodologies
Edmund K. Burke, Graham Kendall

Linear Algebra Done Right
Sheldon Axler

Linear Algebra
Jörg Liesen, Volker Mehrmann

Algebra
Serge Lang

Understanding Analysis
Stephen Abbott

Linear Programming
Robert J Vanderbei

Understanding Statistics Using R
Randall Schumacker, Sara Tomek

An Introduction to Statistical Learning
Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani

Statistical Learning from a Regression Perspective
Richard A. Berk

Applied Partial Differential Equations
J. David Logan

Robotics
Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, Giuseppe Oriolo

Regression Modeling Strategies
Frank E. Harrell , Jr.

A Modern Introduction to Probability and Statistics
F.M. Dekking, C. Kraaikamp, H.P. Lopuhaä, L.E. Meester

The Python Workbook
Ben Stephenson

Machine Learning in Medicine — a Complete Overview
Ton J. Cleophas, Aeilko H. Zwinderman

Object-Oriented Analysis, Design and Implementation
Brahma Dathan, Sarnath Ramnath

Introduction to Data Science
Laura Igual, Santi Seguí

Applied Predictive Modeling
Max Kuhn, Kjell Johnson

Python For ArcGIS
Laura Tateosian

Concise Guide to Databases
Peter Lake, Paul Crowther

Digital Image Processing
Wilhelm Burger, Mark J. Burge

Bayesian Essentials with R
Jean-Michel Marin, Christian P. Robert

Robotics, Vision and Control
Peter Corke

Foundations of Programming Languages
Kent D. Lee

Introduction to Artificial Intelligence
Wolfgang Ertel

Introduction to Deep Learning
Sandro Skansi

Linear Algebra and Analytic Geometry for Physical Sciences
Giovanni Landi, Alessandro Zampini

Applied Linear Algebra
Peter J. Olver, Chehrzad Shakiban

Neural Networks and Deep Learning
Charu C. Aggarwal

Data Science and Predictive Analytics
Ivo D. Dinov

Analysis for Computer Scientists
Michael Oberguggenberger, Alexander Ostermann

Excel Data Analysis
Hector Guerrero

A Beginners Guide to Python 3 Programming
John Hunt

Advanced Guide to Python 3 Programming
John Hunt