Skip to content
forked from ijkguo/mx-rcnn

Parallel Faster R-CNN implementation with MXNet.

License

Notifications You must be signed in to change notification settings

peijinwang/mx-rcnn

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Faster R-CNN in MXNet

example detections

Set up environment

  • Require latest MXNet. Set environment variable MXNET_CUDNN_AUTOTUNE_DEFAULT=0.
  • Install Python package mxnet or mxnet-cu90, cython and opencv-python matplotlib pycocotools tqdm.

Out-of-box inference models

Download any of the following models and run python3 demo.py --params $MODEL_FILE$ --network $Network$ --dataset $Dataset$ to get single image inference. Different dataset has different object class names.

Network Dataset Imageset Reference Result Link
vgg16 voc 07/07 69.9 70.23 Dropbox
vgg16 voc 07++12/07 73.2 75.97 Dropbox
resnet101 voc 07++12/07 76.4 79.35 Dropbox
vgg16 coco train2017/val2017 21.2 22.8 Dropbox
resnet101 coco train2017/val2017 27.2 26.1 Dropbox

Download data and label

Follow py-faster-rcnn for data preparation instructions.

  • Pascal VOC should be in data/VOCdevkit containing VOC2007, VOC2012 and annotations.
  • MSCOCO should be in data/coco containing train2017, val2017 and annotations/instances_train2017.json, annotations/instances_val2017.json.

Download pretrained ImageNet models

Training and evaluation

Use python3 train.py --pretrained $IMAGENET_MODEL_FILE$ --network $Network$ --dataset $Dataset$ to train, python3 test.py --params $MODEL_FILE$ --network $Network --dataset $Dataset$ to evaluate.

History

  • May 25, 2016: We released Fast R-CNN implementation.
  • July 6, 2016: We released Faster R-CNN implementation.
  • July 23, 2016: We updated to MXNet module solver.
  • Oct 10, 2016: tornadomeet released approximate end-to-end training.
  • Oct 30, 2016: We updated to MXNet module inference.
  • Jan 19, 2017: We accelerated our pipeline and supported ResNet training.
  • Jun 22, 2018: We simplified code.

Disclaimer

This repository used code from MXNet, Fast R-CNN, Faster R-CNN, caffe, tornadomeet/mx-rcnn, MS COCO API.
Thanks to tornadomeet for end-to-end experiments and MXNet contributers for helpful discussions.

References

  1. Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems. In Neural Information Processing Systems, Workshop on Machine Learning Systems, 2015
  2. Ross Girshick. "Fast R-CNN." In Proceedings of the IEEE International Conference on Computer Vision, 2015.
  3. Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. "Faster R-CNN: Towards real-time object detection with region proposal networks." In IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016.
  4. Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. "Caffe: Convolutional architecture for fast feature embedding." In Proceedings of the ACM International Conference on Multimedia, 2014.
  5. Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman. "The pascal visual object classes (voc) challenge." International journal of computer vision 88, no. 2 (2010): 303-338.
  6. Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. "ImageNet: A large-scale hierarchical image database." In Computer Vision and Pattern Recognition, IEEE Conference on, 2009.
  7. Karen Simonyan, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).
  8. Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. "Deep Residual Learning for Image Recognition". In Computer Vision and Pattern Recognition, IEEE Conference on, 2016.
  9. Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. "Microsoft COCO: Common Objects in Context" In European Conference on Computer Vision, pp. 740-755. Springer International Publishing, 2014.

About

Parallel Faster R-CNN implementation with MXNet.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%