-
Notifications
You must be signed in to change notification settings - Fork 76
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
9912f0a
commit 8ec0dac
Showing
6 changed files
with
599 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,191 @@ | ||
from math import ceil | ||
from typing import Optional, Tuple, cast | ||
|
||
import torch | ||
from torch import Tensor | ||
|
||
from pfhedge._utils.doc import _set_attr_and_docstring, _set_docstring | ||
from pfhedge._utils.str import _format_float | ||
from pfhedge._utils.typing import TensorOrScalar | ||
from pfhedge.stochastic import generate_kou_jump | ||
|
||
from .base import BasePrimary | ||
|
||
|
||
class KouJumpStock(BasePrimary): | ||
r"""A stock of which spot prices follow the Kou's jump diffusion. | ||
.. seealso:: | ||
- :func:`pfhedge.stochastic.generate_kou_jump`: | ||
The stochastic process. | ||
Args: | ||
sigma (float, default=0.2): The parameter :math:`\sigma`, | ||
which stands for the volatility of the spot price. | ||
mu (float, default=0.0): The parameter :math:`\mu`, | ||
which stands for the drift of the spot price. | ||
jump_per_year (float, optional): Jump poisson process annual | ||
lambda: Average number of annual jumps. Defaults to 1.0. | ||
jump_eta_up (float, optional): 1/Mu for the up jumps: | ||
Instaneous value. Defaults to 1/0.02. | ||
This has to be larger than 1. | ||
jump_eta_down (float, optional): 1/Mu for the down jumps: | ||
Instaneous value. Defaults to 1/0.05. | ||
This has to be larger than 0. | ||
jump_up_prob (float, optional): Given a jump occurs, | ||
this is conditional prob for up jump. | ||
Down jump occurs with prob 1-jump_up_prob. | ||
Has to be in [0,1]. | ||
cost (float, default=0.0): The transaction cost rate. | ||
dt (float, default=1/250): The intervals of the time steps. | ||
dtype (torch.device, optional): Desired device of returned tensor. | ||
Default: If None, uses a global default | ||
(see :func:`torch.set_default_tensor_type()`). | ||
device (torch.device, optional): Desired device of returned tensor. | ||
Default: if None, uses the current device for the default tensor type | ||
(see :func:`torch.set_default_tensor_type()`). | ||
``device`` will be the CPU for CPU tensor types and | ||
the current CUDA device for CUDA tensor types. | ||
Buffers: | ||
- spot (:class:`torch.Tensor`): The spot prices of the instrument. | ||
This attribute is set by a method :meth:`simulate()`. | ||
The shape is :math:`(N, T)` where | ||
:math:`N` is the number of simulated paths and | ||
:math:`T` is the number of time steps. | ||
Examples: | ||
>>> from pfhedge.instruments import KouJumpStock | ||
>>> | ||
>>> _ = torch.manual_seed(42) | ||
>>> stock = KouJumpStock() | ||
>>> stock.simulate(n_paths=2, time_horizon=5 / 250) | ||
>>> stock.spot | ||
tensor([[1.0000, 1.0101, 1.0137, 1.0144, 1.0211, 1.0180], | ||
[1.0000, 1.0067, 1.0065, 1.0158, 1.0175, 1.0287]]) | ||
Using custom ``dtype`` and ``device``. | ||
>>> stock = KouJumpStock() | ||
>>> stock.to(dtype=torch.float64, device="cuda:0") | ||
KouJumpStock(sigma=0.2000, dt=0.0040, jump_per_year=1., j_mu=0., | ||
j_sigma=0.2000, dtype=torch.float64, device='cuda:0') | ||
""" | ||
|
||
def __init__( | ||
self, | ||
sigma: float = 0.2, | ||
mu: float = 0.0, | ||
jump_per_year: float = 68.0, | ||
jump_eta_up: float = 1 / 0.02, | ||
jump_eta_down: float = 1 / 0.05, | ||
jump_up_prob: float = 0.5, | ||
cost: float = 0.0, | ||
dt: float = 1 / 250, | ||
dtype: Optional[torch.dtype] = None, | ||
device: Optional[torch.device] = None, | ||
) -> None: | ||
super().__init__() | ||
|
||
self.sigma = sigma | ||
self.mu = mu | ||
self.jump_per_year = jump_per_year | ||
self.jump_eta_up = jump_eta_up | ||
self.jump_eta_down = jump_eta_down | ||
self.jump_up_prob = jump_up_prob | ||
self.cost = cost | ||
self.dt = dt | ||
|
||
self.to(dtype=dtype, device=device) | ||
|
||
@property | ||
def default_init_state(self) -> Tuple[float, ...]: | ||
return (1.0,) | ||
|
||
@property | ||
def volatility(self) -> Tensor: | ||
"""Returns the volatility of self. | ||
It is a tensor filled with ``self.sigma``. | ||
""" | ||
return torch.full_like(self.get_buffer("spot"), self.sigma) | ||
|
||
@property | ||
def variance(self) -> Tensor: | ||
"""Returns the volatility of self. | ||
It is a tensor filled with the square of ``self.sigma``. | ||
""" | ||
return torch.full_like(self.get_buffer("spot"), self.sigma ** 2) | ||
|
||
def simulate( | ||
self, | ||
n_paths: int = 1, | ||
time_horizon: float = 20 / 250, | ||
init_state: Optional[Tuple[TensorOrScalar]] = None, | ||
) -> None: | ||
"""Simulate the spot price and add it as a buffer named ``spot``. | ||
The shape of the spot is :math:`(N, T)`, where :math:`N` is the number of | ||
simulated paths and :math:`T` is the number of time steps. | ||
The number of time steps is determinded from ``dt`` and ``time_horizon``. | ||
Args: | ||
n_paths (int, default=1): The number of paths to simulate. | ||
time_horizon (float, default=20/250): The period of time to simulate | ||
the price. | ||
init_state (tuple[torch.Tensor | float], optional): The initial state of | ||
the instrument. | ||
This is specified by a tuple :math:`(S(0),)` where | ||
:math:`S(0)` is the initial value of the spot price. | ||
If ``None`` (default), it uses the default value | ||
(See :attr:`default_init_state`). | ||
It also accepts a :class:`float` or a :class:`torch.Tensor`. | ||
Examples: | ||
>>> from pfhedge.instruments import KouJumpStock | ||
>>> | ||
>>> _ = torch.manual_seed(42) | ||
>>> stock = KouJumpStock() | ||
>>> stock.simulate(n_paths=2, time_horizon=5 / 250, init_state=(2.0,)) | ||
>>> stock.spot | ||
tensor([[2.0000, 2.0032, 2.0091, 2.0149, 1.9865, 1.9817], | ||
[2.0000, 1.9839, 1.9954, 2.0022, 2.0157, 2.0364]]) | ||
""" | ||
if init_state is None: | ||
init_state = cast(Tuple[float], self.default_init_state) | ||
|
||
spot = generate_kou_jump( | ||
n_paths=n_paths, | ||
n_steps=ceil(time_horizon / self.dt + 1), | ||
init_state=init_state, | ||
sigma=self.sigma, | ||
mu=self.mu, | ||
jump_per_year=self.jump_per_year, | ||
jump_eta_up=self.jump_eta_up, | ||
jump_eta_down=self.jump_eta_down, | ||
jump_up_prob=self.jump_up_prob, | ||
dt=self.dt, | ||
dtype=self.dtype, | ||
device=self.device, | ||
) | ||
|
||
self.register_buffer("spot", spot) | ||
|
||
def extra_repr(self) -> str: | ||
params = ["sigma=" + _format_float(self.sigma)] | ||
if self.mu != 0.0: | ||
params.append("mu=" + _format_float(self.mu)) | ||
if self.cost != 0.0: | ||
params.append("cost=" + _format_float(self.cost)) | ||
params.append("dt=" + _format_float(self.dt)) | ||
params.append("jump_per_year=" + _format_float(self.jump_per_year)) | ||
params.append("jump_eta_up=" + _format_float(self.jump_eta_up)) | ||
params.append("jump_eta_down=" + _format_float(self.jump_eta_down)) | ||
params.append("jump_up_prob=" + _format_float(self.jump_up_prob)) | ||
return ", ".join(params) | ||
|
||
|
||
# Assign docstrings so they appear in Sphinx documentation | ||
_set_docstring(KouJumpStock, "default_init_state", BasePrimary.default_init_state) | ||
_set_attr_and_docstring(KouJumpStock, "to", BasePrimary.to) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,175 @@ | ||
import math | ||
from typing import Callable, Optional, Tuple, Union | ||
|
||
import torch | ||
from torch import Tensor | ||
|
||
from pfhedge._utils.typing import TensorOrScalar | ||
|
||
from ._utils import cast_state | ||
|
||
|
||
def generate_kou_jump( | ||
n_paths: int, | ||
n_steps: int, | ||
init_state: Union[Tuple[TensorOrScalar, ...], TensorOrScalar] = (1.0,), | ||
sigma: float = 0.2, | ||
mu: float = 0.0, | ||
jump_per_year: float = 68.0, | ||
jump_eta_up: float = 1 / 0.02, | ||
jump_eta_down: float = 1 / 0.05, | ||
jump_up_prob: float = 0.5, | ||
dt: float = 1 / 250, | ||
dtype: Optional[torch.dtype] = None, | ||
device: Optional[torch.device] = None, | ||
engine: Callable[..., Tensor] = torch.randn, | ||
) -> Tensor: | ||
r"""Kou's Jump Diffusion Model for stock prices. | ||
Assumes number of jumps to be poisson distribution | ||
with ASYMMETRIC jump for up and down movement; the | ||
lof of these jump follows exponential distribution | ||
with mean 1/jump_eta_up and 1/jump_eta_down resp. | ||
See Glasserman, Paul. Monte Carlo Methods in Financial | ||
Engineering. New York: Springer-Verlag, 2004.for details. | ||
Copy available at "https://www.bauer.uh.edu/spirrong/ | ||
Monte_Carlo_Methods_In_Financial_Enginee.pdf" | ||
Combined with the original paper by Kou: | ||
A Jump-Diffusion Model for Option Pricing | ||
https://www.columbia.edu/~sk75/MagSci02.pdf | ||
Args: | ||
n_paths (int): The number of simulated paths. | ||
n_steps (int): The number of time steps. | ||
init_state (tuple[torch.Tensor | float], default=(0.0,)): The initial state of | ||
the time series. | ||
This is specified by a tuple :math:`(S(0),)`. | ||
It also accepts a :class:`torch.Tensor` or a :class:`float`. | ||
The shape of torch.Tensor must be (1,) or (n_paths,). | ||
sigma (float, default=0.2): The parameter :math:`\sigma`, | ||
which stands for the volatility of the time series. | ||
mu (float, default=0.0): The parameter :math:`\mu`, | ||
which stands for the drift of the time series. | ||
jump_per_year (float, optional): Jump poisson process annual | ||
lambda: Average number of annual jumps. Defaults to 1.0. | ||
jump_eta_up (float, optional): 1/Mu for the up jumps: | ||
Instaneous value. Defaults to 1/0.02. | ||
This has to be larger than 1. | ||
jump_eta_down (float, optional): 1/Mu for the down jumps: | ||
Instaneous value. Defaults to 1/0.05. | ||
This has to be larger than 0. | ||
jump_up_prob (float, optional): Given a jump occurs, | ||
this is conditional prob for up jump. | ||
Down jump occurs with prob 1-jump_up_prob. | ||
Has to be in [0,1]. | ||
dt (float, default=1/250): The intervals of the time steps. | ||
dtype (torch.dtype, optional): The desired data type of returned tensor. | ||
Default: If ``None``, uses a global default | ||
(see :func:`torch.set_default_tensor_type()`). | ||
device (torch.device, optional): The desired device of returned tensor. | ||
Default: If ``None``, uses the current device for the default tensor type | ||
(see :func:`torch.set_default_tensor_type()`). | ||
``device`` will be the CPU for CPU tensor types and the current CUDA device | ||
for CUDA tensor types. | ||
engine (callable, default=torch.randn): The desired generator of random numbers | ||
from a standard normal distribution. | ||
A function call ``engine(size, dtype=None, device=None)`` | ||
should return a tensor filled with random numbers | ||
from a standard normal distribution. | ||
Only to be used for the normal component, | ||
jupms uses poisson distribution | ||
Shape: | ||
- Output: :math:`(N, T)` where | ||
:math:`N` is the number of paths and | ||
:math:`T` is the number of time steps. | ||
Returns: | ||
torch.Tensor | ||
Examples: | ||
>>> from pfhedge.stochastic import generate_kou_jump | ||
>>> | ||
>>> _ = torch.manual_seed(42) | ||
>>> generate_kou_jump(2, 5) | ||
tensor([[1.0000, 1.0053, 1.0119, 0.9272, 0.9174], | ||
[1.0000, 1.0321, 1.0275, 1.0373, 1.0446]]) | ||
""" | ||
assert jump_eta_up > 1.0, "jump_eta_up must be larger than 1.0" | ||
assert jump_eta_down > 0.0, "jump_eta_down must be larger than 0.0" | ||
assert 0 <= jump_up_prob <= 1.0, "jump prob must be in [0,1]" | ||
|
||
init_state = cast_state(init_state, dtype=dtype, device=device) | ||
|
||
init_value = init_state[0] | ||
|
||
t = dt * torch.arange(n_steps, device=device, dtype=dtype)[None, :] | ||
returns = ( | ||
engine(*(n_paths, n_steps), dtype=dtype, device=device) * math.sqrt(dt) * sigma | ||
) | ||
|
||
returns[:, 0] = 0.0 | ||
|
||
# Generate jump components | ||
n_jumps = torch.poisson(torch.full((n_paths, n_steps - 1), jump_per_year * dt)).to( | ||
returns | ||
) | ||
# if n_steps is greater than 1 | ||
if (n_steps-1 ) > 0: | ||
# max jumps used to aggregte jump in between dt time | ||
max_jumps = int(n_jumps.max()) | ||
size_paths = (n_paths, n_steps - 1, max_jumps) | ||
|
||
# up exp generator | ||
up_exp_dist = torch.distributions.Exponential(jump_eta_up) | ||
|
||
# down exp generator | ||
down_exp_dist = torch.distributions.Exponential(jump_eta_down) | ||
|
||
log_jump = torch.where( | ||
torch.rand(size_paths) < jump_up_prob, | ||
up_exp_dist.sample(size_paths), | ||
-down_exp_dist.sample(size_paths), | ||
).to(returns) | ||
|
||
# for no jump condition | ||
log_jump = torch.cat( | ||
(torch.zeros(n_paths, n_steps - 1, 1).to(log_jump), log_jump), dim=-1 | ||
) | ||
|
||
exp_jump_ind = torch.exp(log_jump) | ||
|
||
# filter out jump movements that did not occur in dt time | ||
indices_expanded = n_jumps[..., None] | ||
k_range = torch.arange(max_jumps + 1).to(returns) | ||
mask = k_range > indices_expanded | ||
# exp(0) as to no jump after n_jump | ||
exp_jump_ind[mask] = 1.0 | ||
|
||
# aggregate jumps in time dt--> multiplication of exponent | ||
exp_jump = torch.prod(exp_jump_ind, dim=-1) | ||
|
||
# no jump at time 0--> exp(0.0)=1.0 | ||
exp_jump = torch.cat((torch.ones(n_paths, 1).to(exp_jump), exp_jump), dim=1) | ||
|
||
else: | ||
exp_jump = torch.ones(n_paths, 1).to(returns) | ||
|
||
# aggregate jumps upto time t | ||
exp_jump_agg = torch.cumprod(exp_jump, dim=-1) | ||
|
||
# jump correction for drift: see the paper | ||
m = ( | ||
(1 - jump_up_prob) * (jump_eta_down / (jump_eta_down + 1)) | ||
+ (jump_up_prob) * (jump_eta_up / (jump_eta_up - 1)) | ||
- 1 | ||
) | ||
|
||
prices = ( | ||
torch.exp((mu - jump_per_year * m) * t + returns.cumsum(1) - (sigma ** 2) * t / 2) | ||
* init_value.view(-1, 1) | ||
* exp_jump_agg | ||
) | ||
|
||
return prices |
Oops, something went wrong.