-
Notifications
You must be signed in to change notification settings - Fork 14
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Basic support for "conditioned" data frames
- Adds a new S3 class (cnd_df) for represented conditioned data frames, i.e. data frames that carry metadata about what records should be used for derivations - Adds support for basic pretty printing of cnd_df objects - Adds a user-facing function for creating such cnd_df objects: `condition_by` - Adds experimental "mutate"-version function for these conditioned data frames: `derive_by_condition()`
- Loading branch information
1 parent
f9816fb
commit 8dfa57f
Showing
11 changed files
with
1,782 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -46,7 +46,8 @@ Imports: | |
tibble, | ||
vctrs, | ||
readr, | ||
glue | ||
glue, | ||
pillar | ||
Suggests: | ||
knitr, | ||
rmarkdown, | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
# Surprisingly, admiraldev doesn't provide `assert_logical_vector`. | ||
assert_logical_vector <- function(arg, optional = FALSE) { | ||
if (optional && is.null(arg)) { | ||
return(invisible(arg)) | ||
} | ||
|
||
if (!is.logical(arg)) { | ||
err_msg <- sprintf( | ||
"`arg` must be a logical vector but is %s.", | ||
admiraldev::what_is_it(arg) | ||
) | ||
rlang::abort(err_msg) | ||
} | ||
|
||
invisible(arg) | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,299 @@ | ||
# ------------------------------------------------------------------------------ | ||
# File: cnd_df.R | ||
# Package: sdtm.oak | ||
# Author: Ramiro Magno <[email protected]> | ||
# Created: 2024-05-23 | ||
# Last Modified: 2024-05-23 | ||
# ------------------------------------------------------------------------------ | ||
# Description: | ||
# | ||
# This file contains functions and scripts related to the so-called conditioned | ||
# data frames, i.e. those data frames extended with class `cnd_df`. | ||
# | ||
# Functions: | ||
# | ||
# - `new_cnd_df()`: Create a "conditioned data set" (class cnd_df). | ||
# - `is_cnd_df()`: Assess whether the argument is a `cnd_df` data frame. | ||
# - `get_cnd_df_cnd()`: Extract the attribute "cnd" from a `cnd_df` data frame. | ||
# - `get_cnd_df_cnd_sum()`: Extract the attribute "cnd_sum" from a `cnd_df` data frame. | ||
# - `rm_cnd_df()`: De-class a cnd_df data frame. | ||
# - `tbl_sum.cnd_df()`: Provide a tibble header print method for `cnd_df` tibbles. | ||
# - `ctl_new_rowid_pillar.cnd_df()`: A print method for the row ids cnd_df` tibbles. | ||
# - `eval_conditions()`: Find which rows match a set of conditions. | ||
# - `condition_by()`: Create a conditioned data frame (user facing). | ||
# - `derive_by_condition()`: Perform a derivation on a conditioned data frame. | ||
|
||
#' Create a data frame with filtering tags | ||
#' | ||
#' [new_cnd_df()] creates a _conditioned_ data frame, classed `cnd_df`, meaning | ||
#' that this function extends the data frame passed as argument by storing a | ||
#' logical vector `cnd` (as attribute) that marks rows for posterior conditional | ||
#' transformation by methods that support _conditioned_ data frames. | ||
#' | ||
#' @param dat A data frame. | ||
#' @param cnd A logical vector. Length must match the number of rows in `dat`. | ||
#' @param .warn Whether to warn about creating a new _conditioned_ data frame | ||
#' in case that `dat` already is one. | ||
#' | ||
#' @returns A data frame `dat` with the additional class `"cnd_df"` and the | ||
#' following attributes: | ||
#' | ||
#' - `cnd`: The logical vector passed as argument `cnd`: `TRUE` values mark | ||
#' rows in `dat` to be used for transformations; rows marked with `FALSE` are | ||
#' not transformed; and `NA` mark rows whose transformations are to be applied | ||
#' resulting in `NA`. | ||
#' - `cnd_sum`: An integer vector of three elements providing the sum of `TRUE`, | ||
#' `FALSE` and `NA` values in `cnd`, respectively. | ||
#' | ||
#' @examples | ||
#' df <- data.frame(x = 1:3, y = letters[1:3]) | ||
#' sdtm.oak:::new_cnd_df(dat = df, cnd = c(FALSE, NA, TRUE)) | ||
#' | ||
#' @keywords internal | ||
new_cnd_df <- function(dat, cnd, .warn = TRUE) { | ||
|
||
admiraldev::assert_data_frame(dat) | ||
assert_logical_vector(cnd) | ||
|
||
if (!identical(nrow(dat), length(cnd))) { | ||
msg <- c( | ||
"Number of rows in `dat` must match length of `cond`." | ||
) | ||
rlang::abort(message = msg) | ||
} | ||
|
||
is_cnd_df <- inherits(dat, "cnd_df") | ||
if (.warn && is_cnd_df) { | ||
msg <- "`dat` is already a conditioned data frame (`cnd_df`)." | ||
rlang::warn(message = msg) | ||
} | ||
|
||
if (!is_cnd_df) { | ||
class(dat) <- c("cnd_df", class(dat)) | ||
} | ||
|
||
n_true <- sum(cnd, na.rm = TRUE) | ||
n_false <- sum(!cnd, na.rm = TRUE) | ||
n_na <- length(cnd) - (n_true + n_false) | ||
cnd_sum <- c(n_true = n_true, n_false = n_false, n_na = n_na) | ||
|
||
attr(dat, "cnd") <- cnd | ||
attr(dat, "cnd_sum") <- cnd_sum | ||
|
||
return(dat) | ||
} | ||
|
||
is_cnd_df <- function(dat) { | ||
inherits(dat, "cnd_df") | ||
} | ||
|
||
get_cnd_df_cnd <- function(dat) { | ||
if (is_cnd_df(dat)) { | ||
attr(dat, "cnd") | ||
} else { | ||
NULL | ||
} | ||
} | ||
|
||
get_cnd_df_cnd_sum <- function(dat) { | ||
if (is_cnd_df(dat)) { | ||
attr(dat, "cnd_sum") | ||
} else { | ||
NULL | ||
} | ||
} | ||
|
||
#' Remove the cnd_df class from a data frame | ||
#' | ||
#' This function removes the 'cnd_df' class, along with its attributes, if | ||
#' applicable. | ||
#' | ||
#' @param dat A data frame. | ||
#' @return The input `dat` without the 'cnd_df' class. | ||
#' | ||
#' @export | ||
rm_cnd_df <- function(dat) { | ||
if (is_cnd_df(dat)) { | ||
class(dat) <- class(dat)[class(dat) != "cnd_df"] | ||
attr(dat, "cnd") <- NULL | ||
attr(dat, "cnd_sum") <- NULL | ||
} | ||
return(dat) | ||
} | ||
|
||
#' | ||
#' Blah | ||
#' | ||
#' @param x A conditioned tibble of class 'cnd_df'. | ||
#' @param ... Additional arguments passed to the default print method. | ||
#' | ||
#' @importFrom pillar tbl_sum | ||
#' @export | ||
tbl_sum.cnd_df <- function(x, ...) { | ||
default_header <- NextMethod() | ||
|
||
tally <- get_cnd_df_cnd_sum(x) | ||
h2 <- sprintf("%d/%d/%d", tally[1], tally[2], tally[3]) | ||
c(default_header, "Cond. tbl" = h2) | ||
} | ||
|
||
lgl_to_chr <- function(x) { | ||
ifelse(is.na(x), "-", ifelse(x, "T", "F")) | ||
} | ||
|
||
ctl_new_rowid_pillar.cnd_df <- function(controller, x, width, ...) { | ||
|
||
out <- NextMethod() | ||
n_row <- nrow(x) | ||
idx <- seq_len(n_row) | ||
i <- sprintf("%d", idx) | ||
i_width <- nchar(as.character(i)) | ||
i_max_width <- max(i_width) | ||
max_width <- i_max_width + 2 | ||
ws <- strrep(" ", max_width - i_width - 1) | ||
abb_lgl <- lgl_to_chr(attr(controller, "cnd")[idx]) | ||
|
||
row_ids <- paste0(i, ws, abb_lgl) | ||
width <- max(nchar(as.character(row_ids))) | ||
pillar::new_pillar( | ||
list( | ||
title = out$title, | ||
type = out$type, | ||
data = pillar::pillar_component( | ||
pillar::new_pillar_shaft(list(row_ids = row_ids), | ||
width = width, | ||
class = "pillar_rif_shaft" | ||
) | ||
) | ||
), | ||
width = width | ||
) | ||
} | ||
|
||
#' Evaluate conditions | ||
#' | ||
#' @description | ||
#' [eval_conditions()] evaluates a set of conditions in the context of a | ||
#' data frame and an optional environment. | ||
#' | ||
#' The utility of this function is to provide an easy way to generate a logical | ||
#' vector of matching records from a set of logical conditions involving | ||
#' variables in a data frame (`dat`) and optionally in a supplementary | ||
#' environment (`.env`). The set of logical conditions are provided as | ||
#' expressions to be evaluated in the context of `dat` and `.env`. | ||
#' | ||
#' Variables are looked up in `dat`, then in `.env`, then in the calling | ||
#' function's environment, followed by its parent environments. | ||
#' | ||
#' @param dat A data frame | ||
#' @param ... A set of logical conditions, e.g. `y & z, x | z` (`x`, `y`, `z` | ||
#' would have to exist either as columns in `dat` or in the enviroment | ||
#' `.env`). If multiple expressions are included, they are combined with the | ||
#' `&` operator. | ||
#' @param .na Return value to be used when the conditions evalute to `NA`. | ||
#' @param .env An optional environment to look for variables involved in logical | ||
#' expression passed in `...`. A data frame or a list can also be passed that | ||
#' will be coerced to an environment internally. | ||
#' | ||
#' @returns A logical vector reflecting matching rows in `dat`. | ||
#' | ||
#' @examples | ||
#' # Create a sample data frame | ||
#' df <- data.frame( | ||
#' x = c(1, 2, 3, 4, 5), | ||
#' y = c(TRUE, FALSE, TRUE, FALSE, TRUE), | ||
#' z = c("a", "b", "a", "b", "a") | ||
#' ) | ||
#' | ||
#' # Simple condition on one column | ||
#' sdtm.oak:::eval_conditions(df, x > 2) | ||
#' | ||
#' # Combined conditions on multiple columns | ||
#' sdtm.oak:::eval_conditions(df, x > 2, y) | ||
#' | ||
#' # Using conditions with NA handling | ||
#' df_with_na <- data.frame( | ||
#' x = c(1, 2, NA, 4, 5), | ||
#' y = c(TRUE, FALSE, TRUE, FALSE, TRUE) | ||
#' ) | ||
#' sdtm.oak:::eval_conditions(df_with_na, x > 2, .na = FALSE) | ||
#' | ||
#' # The environment where `eval_conditions()` is called is also inspected | ||
#' # when evaluating conditions in `...`. | ||
#' w <- 1 | ||
#' sdtm.oak:::eval_conditions(df, x > w) | ||
#' | ||
#' # Using an environment | ||
#' env <- rlang::env(w = 2) | ||
#' sdtm.oak:::eval_conditions(df, x > w, .env = env) | ||
#' | ||
#' # In place of an environment, you may alternatively pass a list or data frame. | ||
#' sdtm.oak:::eval_conditions(df, x > w, .env = list(w = 3)) | ||
#' sdtm.oak:::eval_conditions(df, x > w, .env = tibble::tibble(w = 4)) | ||
#' | ||
#' @keywords internal | ||
eval_conditions <- function(dat, | ||
..., | ||
.na = NA, | ||
.env = rlang::env()) { | ||
|
||
conditions <- rlang::enexprs(...) | ||
|
||
# List (or data frame). | ||
if (is.list(.env)) { | ||
.env <- rlang::as_environment(.env, parent = rlang::env()) | ||
} | ||
|
||
lgl_vctrs <- | ||
conditions |> | ||
purrr::map(~ rlang::eval_tidy(.x, dat, env = .env)) |> | ||
purrr::map(~ dplyr::if_else(is.na(.x), .na, .x)) | ||
|
||
cnd <- purrr::reduce(lgl_vctrs, `&`, .init = rep(TRUE, nrow(dat))) | ||
|
||
cnd | ||
} | ||
|
||
#' Condition a data set based on specified conditions | ||
#' | ||
#' This function tags records in a data set, indicating which rows match the | ||
#' specified conditions. | ||
#' | ||
#' @param dat A tibble. | ||
#' @param ... Conditions to filter the tibble. | ||
#' @return A tibble with an additional class 'cnd_df' and a logical vector | ||
#' attribute indicating matching rows. | ||
#' @param .na Return value to be used when the conditions evalute to `NA`. | ||
#' @param .env An optional environment to look for variables involved in logical | ||
#' expression passed in `...`. A data frame or a list can also be passed that | ||
#' will be coerced to an environment internally. | ||
#' | ||
#' @export | ||
condition_by <- function(dat, ..., .na = NA, .env = rlang::env()) { | ||
|
||
if (is_cnd_df(dat)) { | ||
rlang::warn( | ||
c("`dat` is already a conditioned data frame (`cnd_df`).", | ||
"The previous condition will be replaced by the new one.") | ||
) | ||
} | ||
|
||
cnd <- eval_conditions(dat = dat, ..., .na = .na, .env = .env) | ||
new_cnd_df(dat, cnd = cnd, .warn = FALSE) | ||
} | ||
|
||
#' @keywords internal | ||
derive_by_condition <- function(dat, ...) { | ||
|
||
cnd <- get_cnd_df_cnd(dat) | ||
derivations <- rlang::enquos(...) | ||
derived_vars <- names(derivations) | ||
|
||
lst <- purrr::map(derivations, ~ rlang::expr(dplyr::if_else({{cnd}}, !!.x, NA))) | ||
lst <- rlang::set_names(lst, derived_vars) | ||
dat2 <- dplyr::mutate({{dat}}, !!!lst) | ||
rm_cnd_df(dat2) | ||
} | ||
|
||
|
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Oops, something went wrong.
Oops, something went wrong.