Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

0063 Move examples for internal functions to unit tests #69

Merged
merged 7 commits into from
Jul 24, 2024
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,6 @@ export(derive_blfl)
export(derive_seq)
export(derive_study_day)
export(domain_example)
export(dtc_timepart)
ShiyuC marked this conversation as resolved.
Show resolved Hide resolved
export(fmt_cmp)
export(generate_oak_id_vars)
export(hardcode_ct)
Expand Down
76 changes: 0 additions & 76 deletions R/cnd_df.R
Original file line number Diff line number Diff line change
Expand Up @@ -48,10 +48,6 @@
#' @seealso [is_cnd_df()], [get_cnd_df_cnd()], [get_cnd_df_cnd_sum()],
#' [rm_cnd_df()].
#'
#' @examples
#' df <- data.frame(x = 1:3, y = letters[1:3])
#' sdtm.oak:::new_cnd_df(dat = df, cnd = c(FALSE, NA, TRUE))
#'
#' @keywords internal
new_cnd_df <- function(dat, cnd, .warn = TRUE) {
admiraldev::assert_data_frame(dat)
Expand Down Expand Up @@ -98,13 +94,6 @@ new_cnd_df <- function(dat, cnd, .warn = TRUE) {
#' @seealso [new_cnd_df()], [get_cnd_df_cnd()], [get_cnd_df_cnd_sum()],
#' [rm_cnd_df()].
#'
#' @examples
#' df <- data.frame(x = 1:3, y = letters[1:3])
#' sdtm.oak:::is_cnd_df(df)
#'
#' cnd_df <- sdtm.oak:::new_cnd_df(dat = df, cnd = c(FALSE, NA, TRUE))
#' sdtm.oak:::is_cnd_df(cnd_df)
#'
#' @keywords internal
is_cnd_df <- function(dat) {
inherits(dat, "cnd_df")
Expand All @@ -123,13 +112,6 @@ is_cnd_df <- function(dat) {
#' @seealso [new_cnd_df()], [is_cnd_df()], [get_cnd_df_cnd_sum()],
#' [rm_cnd_df()].
#'
#' @examples
#' df <- data.frame(x = 1:3, y = letters[1:3])
#' sdtm.oak:::get_cnd_df_cnd(df)
#'
#' cnd_df <- sdtm.oak:::new_cnd_df(dat = df, cnd = c(FALSE, NA, TRUE))
#' sdtm.oak:::get_cnd_df_cnd(cnd_df)
#'
#' @keywords internal
get_cnd_df_cnd <- function(dat) {
if (is_cnd_df(dat)) {
Expand All @@ -151,13 +133,6 @@ get_cnd_df_cnd <- function(dat) {
#'
#' @seealso [new_cnd_df()], [is_cnd_df()], [get_cnd_df_cnd()], [rm_cnd_df()].
#'
#' @examples
#' df <- data.frame(x = 1:3, y = letters[1:3])
#' sdtm.oak:::get_cnd_df_cnd_sum(df)
#'
#' cnd_df <- sdtm.oak:::new_cnd_df(dat = df, cnd = c(FALSE, NA, TRUE))
#' sdtm.oak:::get_cnd_df_cnd_sum(cnd_df)
#'
#' @keywords internal
get_cnd_df_cnd_sum <- function(dat) {
if (is_cnd_df(dat)) {
Expand All @@ -178,13 +153,6 @@ get_cnd_df_cnd_sum <- function(dat) {
#' @seealso [new_cnd_df()], [is_cnd_df()], [get_cnd_df_cnd()],
#' [get_cnd_df_cnd_sum()].
#'
#' @examples
#' df <- data.frame(x = 1:3, y = letters[1:3])
#' cnd_df <- sdtm.oak:::new_cnd_df(dat = df, cnd = c(FALSE, NA, TRUE))
#'
#' sdtm.oak:::is_cnd_df(cnd_df)
#' sdtm.oak:::is_cnd_df(sdtm.oak:::rm_cnd_df(cnd_df))
#'
#' @keywords internal
rm_cnd_df <- function(dat) {
if (is_cnd_df(dat)) {
Expand Down Expand Up @@ -290,41 +258,6 @@ ctl_new_rowid_pillar.cnd_df <- function(controller, x, width, ...) {
#'
#' @returns A logical vector reflecting matching rows in `dat`.
#'
#' @examples
#' # Create a sample data frame
#' df <- data.frame(
#' x = c(1, 2, NA_integer_, 4, 5),
#' y = c(TRUE, FALSE, TRUE, FALSE, TRUE),
#' z = c("a", "b", "a", "b", "a")
#' )
#'
#' # Simple condition on one column
#' sdtm.oak:::eval_conditions(df, x > 2)
#'
#' # Combined conditions on multiple columns
#' sdtm.oak:::eval_conditions(df, x > 2 & y)
#' sdtm.oak:::eval_conditions(df, x > 2, y)
#'
#' # Using conditions with NA handling
#' df_with_na <- data.frame(
#' x = c(1, 2, NA, 4, 5),
#' y = c(TRUE, FALSE, TRUE, FALSE, TRUE)
#' )
#' sdtm.oak:::eval_conditions(df_with_na, x > 2, .na = FALSE)
#'
#' # The environment where `eval_conditions()` is called is also inspected
#' # when evaluating conditions in `...`.
#' w <- 1
#' sdtm.oak:::eval_conditions(df, x > w)
#'
#' # Using an environment
#' env <- rlang::env(w = 2)
#' sdtm.oak:::eval_conditions(df, x > w, .env = env)
#'
#' # In place of an environment, you may alternatively pass a list or data frame.
#' sdtm.oak:::eval_conditions(df, x > w, .env = list(w = 3))
#' sdtm.oak:::eval_conditions(df, x > w, .env = tibble::tibble(w = 4))
#'
#' @keywords internal
eval_conditions <- function(dat,
...,
Expand Down Expand Up @@ -405,15 +338,6 @@ condition_add <- function(dat, ..., .na = NA, .dat2 = rlang::env()) {
#' @param .after Control where new columns should appear, i.e. after which
#' columns.
#'
#' @examples
#' df <- tibble::tibble(x = 1L:3L, y = letters[x])
#' cnd_df <- condition_add(df, x > 1L, y %in% c("a", "b"))
#'
#' # Because `cnd_df` is a conditioned data frame, dplyr::mutate() generic
#' # dispatches this S3 method and mutates only the second row, as that is the
#' # only record that fulfills simultaneously `x > 1L` and `y %in% c("a", "b")`.
#' dplyr::mutate(cnd_df, z = "match")
#'
#' @inheritParams dplyr::mutate
#' @importFrom dplyr mutate
#' @keywords internal
Expand Down
61 changes: 0 additions & 61 deletions R/ct.R
Original file line number Diff line number Diff line change
Expand Up @@ -13,21 +13,6 @@
#' @param set A scalar character (string), one of: `"all"` (default), `"ct_clst"`,
#' `"from"` or `"to"`.
#'
#' @examples
#' # These two calls are equivalent and return all required variables in a
#' # controlled terminology data set.
#' ct_spec_vars()
#' ct_spec_vars("all")
#'
#' # "Codelist code" variable name.
#' ct_spec_vars("ct_clst")
#'
#' # "From" variables
#' ct_spec_vars("from")
#'
#' # The "to" variable.
#' ct_spec_vars("to")
#'
#' @keywords internal
#' @export
ct_spec_vars <- function(set = c("all", "ct_clst", "from", "to")) {
Expand Down Expand Up @@ -71,25 +56,6 @@ ct_spec_vars <- function(set = c("all", "ct_clst", "from", "to")) {
#' @returns The function throws an error if `ct_spec` is not a valid controlled
#' terminology data set; otherwise, `ct_spec` is returned invisibly.
#'
#' @examples
#' # If `ct_spec` is a valid controlled terminology then it is returned invisibly.
#' ct_spec_01 <- read_ct_spec_example("ct-01-cm")
#' all.equal(ct_spec_01, sdtm.oak:::assert_ct_spec(ct_spec_01))
#'
#' # A minimal set of variables needs to be present in `ct_spec` for it to pass the
#' # assertion; `sdtm.oak:::ct_spec_vars()` defines their names.
#' (req_vars <- sdtm.oak:::ct_spec_vars())
#'
#' # Other (facultative) variables also present in the controlled terminology
#' # example.
#' (opt_vars <- setdiff(colnames(ct_spec_01), req_vars))
#'
#' # With only the mandatory variables, the assertion still passes.
#' sdtm.oak:::assert_ct_spec(ct_spec_01[req_vars])
#'
#' # Not having the required variables results in an error.
#' try(sdtm.oak:::assert_ct_spec(ct_spec_01[opt_vars]))
#'
#' @keywords internal
assert_ct_spec <- function(ct_spec, optional = FALSE) {
admiraldev::assert_data_frame(
Expand Down Expand Up @@ -128,21 +94,6 @@ assert_ct_spec <- function(ct_spec, optional = FALSE) {
#' given the controlled terminology data set; otherwise, `ct_clst` is returned
#' invisibly.
#'
#' @examples
#' # Load a controlled terminology example.
#' (ct_spec <- read_ct_spec_example("ct-01-cm"))
#'
#' # Should work fine.
#' sdtm.oak:::assert_ct_clst(ct_spec = ct_spec, ct_clst = "C71113")
#'
#' # In certain cases, you might allow `ct_clst` to be `NULL` as to indicate absence,
#' # in that case, set `optional` to `TRUE` to make `assert_ct_clst()` more
#' # forgiving.
#' sdtm.oak:::assert_ct_clst(ct_spec = ct_spec, ct_clst = NULL, optional = TRUE)
#'
#' # Otherwise it would err.
#' try(sdtm.oak:::assert_ct_clst(ct_spec = ct_spec, ct_clst = NULL, optional = FALSE))
#'
#' @keywords internal
assert_ct_clst <- function(ct_spec, ct_clst, optional = FALSE) {
is_ct_spec_missing <- is.null(ct_spec)
Expand Down Expand Up @@ -206,18 +157,6 @@ assert_ct_clst <- function(ct_spec, ct_clst, optional = FALSE) {
#' @returns A [tibble][tibble::tibble-package] with two columns, `from` and
#' `to`, indicating the mapping of values, one per row.
#'
#' @examples
#' # Read in a bundled controlled terminology spec example (ex. 01).
#' (ct_spec_01 <- read_ct_spec_example("ct-01-cm"))
#'
#' # Generate mappings from the terminology specification.
#' sdtm.oak:::ct_mappings(ct_spec = ct_spec_01)
#'
#' # Take a glimpse at those mappings where an actual recoding happens.
#' sdtm.oak:::ct_mappings(ct_spec = ct_spec_01) |>
#' dplyr::filter(from != to) |>
#' print(n = 20)
#'
#' @importFrom rlang .data
#' @keywords internal
ct_mappings <- function(ct_spec, from = ct_spec_vars("from"), to = ct_spec_vars("to")) {
Expand Down
42 changes: 1 addition & 41 deletions R/derive_blfl.R
Original file line number Diff line number Diff line change
Expand Up @@ -9,19 +9,6 @@
#'
#' @return Character vector containing ISO8601 dates.
#'
#' @examples
#' ## Partial or missing dates set to NA by default
#' sdtm.oak:::dtc_datepart(
#' c(NA, "", "2021", "2021-12", "2021-12-25", "2021-12-25T12:00:00")
#' )
#' # |--> c(NA, NA, NA, NA, "2021-12-25", "2021-12-25")
#'
#' ## Prevent partial or missing dates from being set to NA
#' sdtm.oak:::dtc_datepart(
#' c(NA, "", "2021", "2021-12", "2021-12-25", "2021-12-25T12:00:00"),
#' partial_as_na = FALSE
#' )
#' # |--> c(NA, "", "2021", "2021-12", "2021-12-25", "2021-12-25")
#' @keywords internal
dtc_datepart <- function(dtc, partial_as_na = TRUE) {
# Assert that dtc is a character vector
Expand Down Expand Up @@ -51,36 +38,9 @@ dtc_datepart <- function(dtc, partial_as_na = TRUE) {
#' seconds should be ignored (default is `TRUE`).
#'
#' @return Character vector containing ISO 8601 times.
#' @export
ShiyuC marked this conversation as resolved.
Show resolved Hide resolved
#'
#' @keywords internal
#' ## Partial or missing times set to NA and seconds ignored by default
#' sdtm.oak:::dtc_timepart(
#' c(NA, "", "2021-12-25", "2021-12-25T12", "2021-12-25T12:30", "2021-12-25T12:30:59")
#' )
#' # |--> c(NA, NA, NA, NA, "12:30", "12:30")
#'
#' ## Prevent partial or missing times from being set to NA
#' sdtm.oak:::dtc_timepart(
#' c(NA, "", "2021-12-25", "2021-12-25T12", "2021-12-25T12:30", "2021-12-25T12:30:59"),
#' partial_as_na = FALSE
#' )
#' # |--> c(NA, "", "", "12", "12:30", "12:30")
#'
#' ## Do not ignore seconds, partial or missing times set to NA
#' sdtm.oak:::dtc_timepart(
#' c(NA, "", "2021-12-25", "2021-12-25T12", "2021-12-25T12:30", "2021-12-25T12:30:59"),
#' ignore_seconds = FALSE
#' )
#' # |--> c(NA, NA, NA, NA, NA, "12:30:59")
#'
#' ## Do not ignore seconds and prevent partial or missing times from being set to NA
#' sdtm.oak:::dtc_timepart(
#' c(NA, "", "2021-12-25", "2021-12-25T12", "2021-12-25T12:30", "2021-12-25T12:30:59"),
#' partial_as_na = FALSE,
#' ignore_seconds = FALSE
#' )
#' # |--> c(NA, "", "", "12", "12:30", "12:30:59")

dtc_timepart <- function(dtc, partial_as_na = TRUE, ignore_seconds = TRUE) {
# Assert that dtc is a character vector
admiraldev::assert_character_vector(dtc)
Expand Down
11 changes: 0 additions & 11 deletions R/derive_seq.R
Original file line number Diff line number Diff line change
Expand Up @@ -80,17 +80,6 @@ derive_seq <-
#'
#' @returns A logical vector.
#'
#' @examples
#' # A valid SEQ name.
#' sdtm.oak:::is_seq_name("AESEQ")
#'
#' # Not valid sequence number (`--SEQ`) variable names.
#' # Case matters.
#' sdtm.oak:::is_seq_name("AEseq")
#'
#' # A valid name has to end in "SEQ".
#' sdtm.oak:::is_seq_name("AESEQUENCE")
#'
#' @keywords internal
is_seq_name <- function(x) {
stringr::str_detect(x, "SEQ$")
Expand Down
Loading
Loading