Skip to content

Commit

Permalink
deploy: 5ad44f7
Browse files Browse the repository at this point in the history
  • Loading branch information
atztogo committed Sep 20, 2024
1 parent e9d780b commit 9608339
Show file tree
Hide file tree
Showing 5 changed files with 37 additions and 15 deletions.
Binary file modified .doctrees/environment.pickle
Binary file not shown.
Binary file modified .doctrees/pypolymlp.doctree
Binary file not shown.
18 changes: 14 additions & 4 deletions _sources/pypolymlp.md
Original file line number Diff line number Diff line change
Expand Up @@ -15,13 +15,15 @@ The training process involves using a dataset consisting of supercell
displacements, forces, and energies. The trained MLPs are then employed to
compute forces for supercells with specific displacements.

For more details on the methodology, refer to <u>A. Togo and A. Seko, J. Chem. Phys.
**160**, 211001 (2024)</u> [[doi](https://doi.org/10.1063/5.0211296)].
For further details on combining phono3py calculations with pypolymlp, refer to
<u>A. Togo and A. Seko, J. Chem. Phys. **160**, 211001 (2024)</u>
[[doi](https://doi.org/10.1063/5.0211296)]
[[arxiv](https://arxiv.org/abs/2401.17531)].

An example of its usage can be found in the `example/NaCl-pypolymlp` directory
in the distribution from GitHub or PyPI.

## Requirement
## Requirements

- [pypolymlp](https://github.com/sekocha/pypolymlp)
- [symfc](https://github.com/symfc/symfc)
Expand Down Expand Up @@ -228,7 +230,7 @@ displacement distance of 0.001 Angstrom. The forces for these supercells are
then evaluated using pypolymlp. Both the generated displacements and the
corresponding forces are stored in the `phono3py_mlp_eval_dataset` file.

### Steps 4-6: Force constants calculation (random displacements in step 5)
### Steps 4-7: Force constants calculation (random displacements in step 5)

After developing MLPs, random displacements are generated by specifying
{ref}`--rd <random_displacements_option>` option. To compute force constants
Expand Down Expand Up @@ -329,6 +331,14 @@ an additional 200 supercells. In total, 400 supercells are created. The forces
for these supercells are then evaluated. Finally, the force constants are
calculated using symfc.

## Convergence with respect to dataset size

In general, increasing the amount of data improves the accuracy of representing
force constants. Therefore, it is recommended to check the convergence of the
target property with respect to the number of supercells in the training
dataset. Lattice thermal conductivity may be a convenient property to monitor
when assessing convergence.

## Parameters for developing MLPs

A few parameters can be specified using the `--mlp-params` option for the
Expand Down
32 changes: 22 additions & 10 deletions pypolymlp.html
Original file line number Diff line number Diff line change
Expand Up @@ -324,13 +324,14 @@ <h2> Contents </h2>
</div>
<nav aria-label="Page">
<ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#requirement">Requirement</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#requirements">Requirements</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#workflow">Workflow</a><ul class="nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#steps-1-3-dataset-preparation">Steps 1-3: Dataset preparation</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#steps-4-7-force-constants-calculation-systematic-displacements-in-step-5">Steps 4-7: Force constants calculation (systematic displacements in step 5)</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#steps-4-6-force-constants-calculation-random-displacements-in-step-5">Steps 4-6: Force constants calculation (random displacements in step 5)</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#steps-4-7-force-constants-calculation-random-displacements-in-step-5">Steps 4-7: Force constants calculation (random displacements in step 5)</a></li>
</ul>
</li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#convergence-with-respect-to-dataset-size">Convergence with respect to dataset size</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#parameters-for-developing-mlps">Parameters for developing MLPs</a><ul class="nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#ntrain-and-ntest"><code class="docutils literal notranslate"><span class="pre">ntrain</span></code> and <code class="docutils literal notranslate"><span class="pre">ntest</span></code></a></li>
</ul>
Expand Down Expand Up @@ -358,12 +359,14 @@ <h2> Contents </h2>
<p>The training process involves using a dataset consisting of supercell
displacements, forces, and energies. The trained MLPs are then employed to
compute forces for supercells with specific displacements.</p>
<p>For more details on the methodology, refer to <u>A. Togo and A. Seko, J. Chem. Phys.
<strong>160</strong>, 211001 (2024)</u> [<a class="reference external" href="https://doi.org/10.1063/5.0211296">doi</a>].</p>
<p>For further details on combining phono3py calculations with pypolymlp, refer to
<u>A. Togo and A. Seko, J. Chem. Phys. <strong>160</strong>, 211001 (2024)</u>
[<a class="reference external" href="https://doi.org/10.1063/5.0211296">doi</a>]
[<a class="reference external" href="https://arxiv.org/abs/2401.17531">arxiv</a>].</p>
<p>An example of its usage can be found in the <code class="docutils literal notranslate"><span class="pre">example/NaCl-pypolymlp</span></code> directory
in the distribution from GitHub or PyPI.</p>
<section id="requirement">
<h2>Requirement<a class="headerlink" href="#requirement" title="Link to this heading">#</a></h2>
<section id="requirements">
<h2>Requirements<a class="headerlink" href="#requirements" title="Link to this heading">#</a></h2>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/sekocha/pypolymlp">pypolymlp</a></p></li>
<li><p><a class="reference external" href="https://github.com/symfc/symfc">symfc</a></p></li>
Expand Down Expand Up @@ -558,8 +561,8 @@ <h3>Steps 4-7: Force constants calculation (systematic displacements in step 5)<
then evaluated using pypolymlp. Both the generated displacements and the
corresponding forces are stored in the <code class="docutils literal notranslate"><span class="pre">phono3py_mlp_eval_dataset</span></code> file.</p>
</section>
<section id="steps-4-6-force-constants-calculation-random-displacements-in-step-5">
<h3>Steps 4-6: Force constants calculation (random displacements in step 5)<a class="headerlink" href="#steps-4-6-force-constants-calculation-random-displacements-in-step-5" title="Link to this heading">#</a></h3>
<section id="steps-4-7-force-constants-calculation-random-displacements-in-step-5">
<h3>Steps 4-7: Force constants calculation (random displacements in step 5)<a class="headerlink" href="#steps-4-7-force-constants-calculation-random-displacements-in-step-5" title="Link to this heading">#</a></h3>
<p>After developing MLPs, random displacements are generated by specifying
<a class="reference internal" href="command-options.html#random-displacements-option"><span class="std std-ref">–rd</span></a> option. To compute force constants
with random displacements, an external force constants calculator is necessary.
Expand Down Expand Up @@ -656,6 +659,14 @@ <h3>Steps 4-6: Force constants calculation (random displacements in step 5)<a cl
calculated using symfc.</p>
</section>
</section>
<section id="convergence-with-respect-to-dataset-size">
<h2>Convergence with respect to dataset size<a class="headerlink" href="#convergence-with-respect-to-dataset-size" title="Link to this heading">#</a></h2>
<p>In general, increasing the amount of data improves the accuracy of representing
force constants. Therefore, it is recommended to check the convergence of the
target property with respect to the number of supercells in the training
dataset. Lattice thermal conductivity may be a convenient property to monitor
when assessing convergence.</p>
</section>
<section id="parameters-for-developing-mlps">
<h2>Parameters for developing MLPs<a class="headerlink" href="#parameters-for-developing-mlps" title="Link to this heading">#</a></h2>
<p>A few parameters can be specified using the <code class="docutils literal notranslate"><span class="pre">--mlp-params</span></code> option for the
Expand Down Expand Up @@ -735,13 +746,14 @@ <h3><code class="docutils literal notranslate"><span class="pre">ntrain</span></
</div>
<nav class="bd-toc-nav page-toc">
<ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#requirement">Requirement</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#requirements">Requirements</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#workflow">Workflow</a><ul class="nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#steps-1-3-dataset-preparation">Steps 1-3: Dataset preparation</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#steps-4-7-force-constants-calculation-systematic-displacements-in-step-5">Steps 4-7: Force constants calculation (systematic displacements in step 5)</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#steps-4-6-force-constants-calculation-random-displacements-in-step-5">Steps 4-6: Force constants calculation (random displacements in step 5)</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#steps-4-7-force-constants-calculation-random-displacements-in-step-5">Steps 4-7: Force constants calculation (random displacements in step 5)</a></li>
</ul>
</li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#convergence-with-respect-to-dataset-size">Convergence with respect to dataset size</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#parameters-for-developing-mlps">Parameters for developing MLPs</a><ul class="nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#ntrain-and-ntest"><code class="docutils literal notranslate"><span class="pre">ntrain</span></code> and <code class="docutils literal notranslate"><span class="pre">ntest</span></code></a></li>
</ul>
Expand Down
2 changes: 1 addition & 1 deletion searchindex.js

Large diffs are not rendered by default.

0 comments on commit 9608339

Please sign in to comment.