-
Notifications
You must be signed in to change notification settings - Fork 24
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
33 changed files
with
67 additions
and
55 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,7 +1,7 @@ | ||
#### ImageBreed | ||
|
||
Unoccupied aerial and ground vehicles (UAVs and UGVs) enable the high throughput collection of images and other sensor data in the field, but the rapid processing and management of these data is often a bottleneck for breeding programs seeking to deploy these technologies for time-sensitive decision making. | ||
Unoccupied aerial and ground vehicles (UAVs and UGVs) enable the high throughput collection of images and other sensor data in the field, but the rapid processing and management of these datasets are often a bottleneck for breeding programs seeking to deploy these technologies for time-sensitive decision making. | ||
[ImageBreed](https://imagebreed.org/) [@doi:10.1002/ppj2.20004] is an open-source, BrAPI-compliant image processing tool that supports the routine use of UAVs and UGVs in breeding programs through standardized pipleines. | ||
It creates orthophotomosaics, applies filters, assigns plot polygons, and extracts ontology-based phenotypes from raw UAV-collected images. | ||
The BrAPI standard is used to push these phenotypes back to a central breeding database where they can be analyzed with other experiment data. | ||
The BrAPI standard is used to push these phenotypes back to a central BrAPI-compliant breeding database where they can be analyzed with other experiment data. | ||
The ImageBreed team has collaborated with others in the community to enhance the BrAPI image data standards, which it uses to upload raw images to a central breeding database, or any other BrAPI-compatible long term storage service. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,4 +1,4 @@ | ||
### Genotyping | ||
|
||
<!-- Ajay --> | ||
Genotyping has become a cornerstone of most breeding processes, but managing the data can be challenging. Understanding different genotyping protocols for various crops is crucial due to the unique genetic structures of each species. Techniques such as SNP genotyping, Genotyping-by-Sequencing (GBS), SSRs, Whole Genome Sequencing (WGS), and array-based genotyping each offer specific advantages depending on the crop and research objectives. BrAPI supports genotypic data by utilizing existing standards such as VCF [@doi:10.1093/bioinformatics/btr330] and the GA4GH Variants schema [@https://github.com/ga4gh-metadata/SchemaBlocks]. The BrAPI community has developed compatible tools for storing, searching, visualizing, and analyzing genotypic data, making it easier to integrate and utilize this information in breeding programs. Mastery of the various genotyping protocols ensures efficient and effective breeding, while BrAPI-compliant tools streamline data management and analysis, enhancing the ability to make data-driven decisions in developing superior crop varieties. | ||
Genotyping has become a cornerstone of most breeding processes, but managing the data can be challenging. Understanding different genotyping protocols for various crops is crucial due to the unique genetic structures of each species. Techniques such as single nucleotide polymorphism (SNP) genotyping, Genotyping-by-Sequencing (GBS), SSRs, Whole Genome Sequencing (WGS), and array-based genotyping each offer specific advantages depending on the crop and research objectives. BrAPI supports genotypic data by utilizing existing standards such as the variant call format (VCF) [@doi:10.1093/bioinformatics/btr330] and the GA4GH Variants schema [@https://github.com/ga4gh-metadata/SchemaBlocks]. The BrAPI community has developed compatible tools for storing, searching, visualizing, and analyzing genotypic data, making it easier to integrate and utilize this information in breeding programs. Mastery of the various genotyping protocols ensures efficient and effective breeding, while BrAPI-compliant tools streamline data management and analysis, enhancing the ability to make data-driven decisions in developing superior crop varieties. |
Oops, something went wrong.