-
Notifications
You must be signed in to change notification settings - Fork 24
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
b3b3856
commit f5967b5
Showing
22 changed files
with
55 additions
and
58 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,5 +1,7 @@ | ||
#### ClimMob | ||
|
||
ClimMob [@doi:10.1016/j.compag.2023.108539] is a software suite that turns the research paradigm in experimental agriculture. The platform supports experiment design, data collection through mobile apps, and data analysis to provide actionable insights. Instead of a few researchers designing complicated trials to compare several agricultural technologies in search of the best solutions for the target environment, ClimMob enables many participants to carry out reasonably simple experiments that taken together can offer even more information. It applies the priciples of citizen science and choice experiments to scale the data collection process, mostly in the format of rankings. Although this data may not be as detailed as from a centralized experiment, it can be very useful to inform decisions to a wide range of locations and environments with increased external validity. ClimMob applications include testing crop varieties, evaluating agronomic practices, and investigating climate resilience strategies. | ||
<!-- Marie-Angelique --> | ||
|
||
During a crop varieties trial, all farmer-collected data is stored in ClimMob. Upon data collectection completion, the raw data is automatically uploaded via BrAPI to a central breeding database for long-term storage. To facilitate this synchronization, ClimMob uses BrAPI to retrieve curated germplasm information from breeding databases when designing a trial, significantly enhancing data quality. Additionally, a process has been developed to push analyzed data from ClimMob to the breeding databases, providing breeders with insights into the potential adoption of the tested crop varieties. | ||
ClimMob [@doi:10.1016/j.compag.2023.108539] is a software suite for a different research paradigm in experimental agriculture. In traditional breeding, researchers designing complicated trials in search of the best solutions for a target environment. ClimMob enables many participants to carry out reasonably simple experiments across many environments. Taken together, this data can be very informative. It applies the principles of citizen science and choice experiments to scale the data collection process, mostly in the format of rankings. Although this data may not be as detailed as from a centralized experiment, it can be very useful to inform decisions to a wide range of locations and environments with increased external validity. ClimMob applications include testing crop varieties, evaluating agronomic practices, and investigating climate resilience strategies. The platform supports experiment design, data collection through mobile apps, and data analysis to provide actionable insights. | ||
|
||
During a crop varieties trial, all farmer-collected data is stored in ClimMob. Upon data collection completion, the raw data is automatically uploaded via BrAPI to a central breeding database for long-term storage. To facilitate this synchronization, ClimMob uses BrAPI to retrieve curated germplasm information from breeding databases when designing a trial, significantly enhancing data quality. Additionally, a process has been developed to push analyzed data from ClimMob to the breeding databases, providing breeders with insights into the potential adoption of the tested crop varieties. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,8 +1,8 @@ | ||
#### PHIS | ||
|
||
<!-- Isabelle --> | ||
The Hybrid Phenotyping Information System ([PHIS](http://www.phis.inrae.fr/) [@doi:https://doi.org/10.1111/nph.15385]), based on the [OpenSILEX](https://github.com/OpenSILEX/) framework, is an ontology-driven information system based on semantic web technologies. PHIS is deployed in several field and greenhouse platforms of the French national [PHENOME](https://www.phenome-emphasis.fr/) and European [EMPHASIS](https://emphasis.plant-phenotyping.eu/) infrastructures. It manages and collects data from Phenotyping and High Throughput Phenotyping experiments on a day to day basis. PHIS unambiguously identifies all the objects and traits in an experiment, and establishes their types and relationships via ontologies and semantics. | ||
The Hybrid Phenotyping Information System ([PHIS](http://www.phis.inrae.fr/) [@doi:10.1111/nph.15385]), based on the [OpenSILEX](https://github.com/OpenSILEX/) framework, is an ontology-driven information system based on semantic web technologies. PHIS is deployed in several field and greenhouse platforms of the French national [PHENOME](https://www.phenome-emphasis.fr/) and European [EMPHASIS](https://emphasis.plant-phenotyping.eu/) infrastructures. It manages and collects data from Phenotyping and High Throughput Phenotyping experiments on a day to day basis. PHIS unambiguously identifies all the objects and traits in an experiment, and establishes their types and relationships via ontologies and semantics. | ||
|
||
PHIS has been designed to be BrAPI-compliant. PHIS adheres to the standards and protocols specified by BrAPI and implements various services aligning with the BrAPI standards, encompassing the Core, Phenotyping, and Germplasm modules. This enables integration and compatibility with BrAPI-compliant systems and platforms. This prerequisite served as the basis for formalizing the data model, while also facilitating compatibility with other standards, such as the Minimal Information About a Plant Phenotyping Experiment ([MIAPPE](https://www.miappe.org/) [@doi:https://doi.org/10.1111/nph.16544]). By integrating BrAPI requirements into its structure, PHIS not only meets the standards of the phenotyping field, but also strengthens its capacity for interoperability and effective collaboration in the wider context of plant breeding and related fields. The fact that data within a PHIS instance can be queried through BrAPI services makes the indexing of PHIS in [FAIDARE](https://urgi.versailles.inra.fr/faidare/) very easy to implement. | ||
PHIS has been designed to be BrAPI-compliant. PHIS adheres to the standards and protocols specified by BrAPI and implements various services aligning with the BrAPI standards, encompassing the Core, Phenotyping, and Germplasm modules. This enables integration and compatibility with BrAPI-compliant systems and platforms. This prerequisite served as the basis for formalizing the data model, while also facilitating compatibility with other standards, such as the Minimal Information About a Plant Phenotyping Experiment ([MIAPPE](https://www.miappe.org/) [@doi:10.1111/nph.16544]). By integrating BrAPI requirements into its structure, PHIS not only meets the standards of the phenotyping field, but also strengthens its capacity for interoperability and effective collaboration in the wider context of plant breeding and related fields. The fact that data within a PHIS instance can be queried through BrAPI services makes the indexing of PHIS in [FAIDARE](https://urgi.versailles.inrae.fr/faidare/) [@https://urgi.versailles.inrae.fr/faidare/] very easy to implement. | ||
|
||
Furthermore, as PHIS offers BrAPI-compliant Web Services, it simplifies the integration and data exchange with other European information systems that handle phenotyping data. The adherence to BrAPI standards ensures a common interface and compatibility, facilitating communication and collaboration between PHIS and other systems in the European context. This interoperability not only eases data sharing, but also promotes a more coherent and efficient approach to the management and use of phenotyping data on various platforms and research initiatives within the European scientific community. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,8 +1,8 @@ | ||
#### PIPPA | ||
|
||
<!-- Rafael --> | ||
[PIPPA](https://pippa.psb.ugent.be) is a data management system used for collecting data from the [WIWAM](https://www.wiwam.be/) range of automated high throughput phenotyping platforms. These platforms have been deployed at different research institutes and commercial breeders across Europe. They can be setup in a variety of configurations with different types of equipment including weighing scales, cameras, and environment sensors. The software features a web interface with functionality for setting up new experiments, planning imaging and irrigation treatments, linking metadata to pots (genotype, growth media, manual treatments), importing data, exporting data, and visualizing data. It also supports the integration of image analysis scripts and connections to a compute cluster for job submission. | ||
[PIPPA](https://pippa.psb.ugent.be) [@https://pippa.psb.ugent.be] is a data management system used for collecting data from the [WIWAM](https://www.wiwam.be/) [@https://www.wiwam.be/] range of automated high throughput phenotyping platforms. These platforms have been deployed at different research institutes and commercial breeders across Europe. They can be setup in a variety of configurations with different types of equipment including weighing scales, cameras, and environment sensors. The software features a web interface with functionality for setting up new experiments, planning imaging and irrigation treatments, linking metadata to pots (genotype, growth media, manual treatments), importing data, exporting data, and visualizing data. It also supports the integration of image analysis scripts and connections to a compute cluster for job submission. | ||
|
||
To share the phenotype data of the experiments linked to publications, an implementation of BrAPI v1.3 was developed on a separate public PIPPA server, which allowed read only access to the data in the BrAPI standardized format. This server was registered on [FAIDARE](https://urgi.versailles.inra.fr/faidare/) which allows the data to be found alongside data from other BrAPI compatible repositories. | ||
To share the phenotype data of the experiments linked to publications, an implementation of BrAPI v1.3 was developed which allowed read only access to the data in the BrAPI standardized format. This server was registered on [FAIDARE](https://urgi.versailles.inrae.fr/faidare/) [@https://urgi.versailles.inrae.fr/faidare/] which allows the data to be found alongside data from other BrAPI compatible repositories. | ||
|
||
As the BrAPI ecosystem has matured, it has created a clear path for the further development of PIPPA. THe BrAPI specification demonstrates how to share data in a manner consistent with the FAIR principles, [@doi:10.1038/sdata.2016.18] which are becoming best practices in plant research data management. The BrAPI technical standard, in combination with the [MIAPPE](https://www.miappe.org/) [@doi:https://doi.org/10.1111/nph.16544] scientific standard, have served as guidelines in the current development effort of the PIPPA project. This development is focused on delivering a public BrAPI v2.1 endpoint and making more high throughput datasets publicly available via BrAPI. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,6 +1,6 @@ | ||
#### PHG | ||
|
||
<!-- Lynn J. --> | ||
The Practical Haplotype Graph (PHG) is a graph-based computational framework that represents large-scale genetic variation and is optimized for plant breeding and genetics. Using a pangenome approach, each PHG stores haplotypes (the sequence of part of an individual chromosome) to represent the collected genes of a species. This allows for a simplified approach for dealing with large scale variation in plant genomes. The PHG pipeline provides support for a range of genomic analyses and allows for the use of graph data to impute complete genomes from low density sequence or variant data. | ||
The Practical Haplotype Graph (PHG) [CITATION NEEDED?] is a graph-based computational framework that represents large-scale genetic variation and is optimized for plant breeding and genetics. Using a pangenome approach, each PHG stores haplotypes (the sequence of part of an individual chromosome) to represent the collected genes of a species. This allows for a simplified approach for dealing with large scale variation in plant genomes. The PHG pipeline provides support for a range of genomic analyses and allows for the use of graph data to impute complete genomes from low density sequence or variant data. | ||
|
||
Users access the crop databases either with direct calls to the PHG embedded server or indirectly using the rPHG library from an R environment. The PHG server accepts BrAPI queries to return information on sample lists and the variants used to define the graph's haplotypes. In addition, PHG users utilize the BrAPI Variant Sets endpoint query to return links to VCF files containing haplotype data. Work on the PHG is ongoing and it is expected to support additional BrAPI endpoints that allow for fine tuned slicing genotypic data in the near future. |
Oops, something went wrong.