Selfie2Anime was a successful use of Image-to-Image translation using UGATIT. In this post we learn how to setup a development environment capable of running UGATIT, then train out own variation of a model.
Detailed tutorial for training and inference are outlined in the blog
pip3 install --upgrade pip
pip3 install -r requirements.txt
conda env create -f environment.yml
conda activate UGATIT
├── dataset
└── YOUR_DATASET_NAME
├── trainA
├── xxx.jpg (name, format does not matter)
├── yyy.png
└── ...
├── trainB
├── zzz.jpg
├── www.png
└── ...
├── testA
├── aaa.jpg
├── bbb.png
└── ...
└── testB
├── ccc.jpg
├── ddd.png
└── ...
python main.py --dataset YOUR_DATASET_NAME
If the memory of gpu is not sufficient, set --light
to True
- But it may not perform well
- paper version is
--light
to False
python main.py --dataset YOUR_DATASET_NAME --phase test
Make sure to set your video device in the State
class of main.py
if you have a unique setup.
By default it'll use the first video device attached
python main.py --dataset YOUR_DATASET_NAME --phase video
python main.py --dataset YOUR_DATASET_NAME --phase web
POST to http://0.0.0.0:5000/process
with the following data format
{
"image": "...."
}
Version 2.0 of Tensorflow isn't supported, you might need to change the environment.yaml
to the following
name: UGATIT
dependencies:
- python=3.5
- matplotlib
- numpy
- pip
- pip:
- opencv-python
- Pillow
# - tensorflow==1.15.0 # CPU support
- tensorflow-gpu==1.15.0
If you find the code useful for your research, please cite their paper:
@article{kim2019u,
title={U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation},
author={Kim, Junho and Kim, Minjae and Kang, Hyeonwoo and Lee, Kwanghee},
journal={arXiv preprint arXiv:1907.10830},
year={2019}
}
- Junho Kim, Minjae Kim, Hyeonwoo Kang, Kwanghee Lee
- U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation