Website • Docs • Twitter • Join Slack Community
Label Studio Format Converter helps you to encode labels into the format of your favorite machine learning library.
Running from the command line:
python label_studio_converter/cli.py --input examples/sentiment_analysis/completions/ --config examples/sentiment_analysis/config.xml --output tmp/output.json
Running from python:
from label_studio_converter import Converter
c = Converter('examples/sentiment_analysis/config.xml')
c.convert_to_json('examples/sentiment_analysis/completions/', 'tmp/output.json')
Getting output file: tmp/output.json
[
{
"reviewText": "Good case, Excellent value.",
"sentiment": "Positive"
},
{
"reviewText": "What a waste of money and time!",
"sentiment": "Negative"
},
{
"reviewText": "The goose neck needs a little coaxing",
"sentiment": "Neutral"
}
]
Use cases: any tasks
Running from the command line:
python label_studio_converter/cli.py --input examples/sentiment_analysis/completions/ --config examples/sentiment_analysis/config.xml --output output_dir --format CSV --csv-separator $'\t'
Running from python:
from label_studio_converter import Converter
c = Converter('examples/sentiment_analysis/config.xml')
c.convert_to_csv('examples/sentiment_analysis/completions/', 'output_dir', sep='\t', header=True)
Getting output file tmp/output.tsv
:
reviewText sentiment
Good case, Excellent value. Positive
What a waste of money and time! Negative
The goose neck needs a little coaxing Neutral
Use cases: any tasks
Running from the command line:
python label_studio_converter/cli.py --input examples/named_entity/completions/ --config examples/named_entity/config.xml --output tmp/output.conll --format CONLL2003
Running from python:
from label_studio_converter import Converter
c = Converter('examples/named_entity/config.xml')
c.convert_to_conll2003('examples/named_entity/completions/', 'tmp/output.conll')
Getting output file tmp/output.conll
-DOCSTART- -X- O
Showers -X- _ O
continued -X- _ O
throughout -X- _ O
the -X- _ O
week -X- _ O
in -X- _ O
the -X- _ O
Bahia -X- _ B-Location
cocoa -X- _ O
zone, -X- _ O
...
Use cases: text tagging
Running from the command line:
python label_studio_converter/cli.py --input examples/image_bbox/completions/ --config examples/image_bbox/config.xml --output tmp/output.json --format COCO --image-dir tmp/images
Running from python:
from label_studio_converter import Converter
c = Converter('examples/image_bbox/config.xml')
c.convert_to_coco('examples/image_bbox/completions/', 'tmp/output.conll', output_image_dir='tmp/images')
Output images could be found in tmp/images
Getting output file tmp/output.json
{
"images": [
{
"width": 800,
"height": 501,
"id": 0,
"file_name": "tmp/images/62a623a0d3cef27a51d3689865e7b08a"
}
],
"categories": [
{
"id": 0,
"name": "Planet"
},
{
"id": 1,
"name": "Moonwalker"
}
],
"annotations": [
{
"id": 0,
"image_id": 0,
"category_id": 0,
"segmentation": [],
"bbox": [
299,
6,
377,
260
],
"ignore": 0,
"iscrowd": 0,
"area": 98020
},
{
"id": 1,
"image_id": 0,
"category_id": 1,
"segmentation": [],
"bbox": [
288,
300,
132,
90
],
"ignore": 0,
"iscrowd": 0,
"area": 11880
}
],
"info": {
"year": 2019,
"version": "1.0",
"contributor": "Label Studio"
}
}
Use cases: image object detection
Running from the command line:
python label_studio_converter/cli.py --input examples/image_bbox/completions/ --config examples/image_bbox/config.xml --output tmp/voc-annotations --format VOC --image-dir tmp/images
Running from python:
from label_studio_converter import Converter
c = Converter('examples/image_bbox/config.xml')
c.convert_to_voc('examples/image_bbox/completions/', 'tmp/output.conll', output_image_dir='tmp/images')
Output images can be found in tmp/images
Corresponding annotations could be found in tmp/voc-annotations/*.xml
:
<?xml version="1.0" encoding="utf-8"?>
<annotation>
<folder>tmp/images</folder>
<filename>62a623a0d3cef27a51d3689865e7b08a</filename>
<source>
<database>MyDatabase</database>
<annotation>COCO2017</annotation>
<image>flickr</image>
<flickrid>NULL</flickrid>
</source>
<owner>
<flickrid>NULL</flickrid>
<name>Label Studio</name>
</owner>
<size>
<width>800</width>
<height>501</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>Planet</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>299</xmin>
<ymin>6</ymin>
<xmax>676</xmax>
<ymax>266</ymax>
</bndbox>
</object>
<object>
<name>Moonwalker</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>288</xmin>
<ymin>300</ymin>
<xmax>420</xmax>
<ymax>390</ymax>
</bndbox>
</object>
</annotation>
Use cases: image object detection
Usage:
label-studio-converter import yolo -i /yolo/root/directory -o ls-tasks.json
Help:
label-studio-converter import yolo -h
usage: label-studio-converter import yolo [-h] -i INPUT [-o OUTPUT]
[--to-name TO_NAME]
[--from-name FROM_NAME]
[--out-type OUT_TYPE]
[--image-root-url IMAGE_ROOT_URL]
[--image-ext IMAGE_EXT]
optional arguments:
-h, --help show this help message and exit
-i INPUT, --input INPUT
directory with YOLO where images, labels, notes.json
are located
-o OUTPUT, --output OUTPUT
output file with Label Studio JSON tasks
--to-name TO_NAME object name from Label Studio labeling config
--from-name FROM_NAME
control tag name from Label Studio labeling config
--out-type OUT_TYPE annotation type - "annotations" or "predictions"
--image-root-url IMAGE_ROOT_URL
root URL path where images will be hosted, e.g.:
http://example.com/images or s3://my-bucket
--image-ext IMAGE_EXT
image extension to search: .jpg, .png
YOLO export folder example:
yolo-folder
images
- 1.jpg
- 2.jpg
- ...
labels
- 1.txt
- 2.txt
classes.txt
classes.txt example
Airplane
Car
We would love to get your help for creating converters to other models. Please feel free to create pull requests.
This software is licensed under the Apache 2.0 LICENSE © Heartex. 2020