Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Ewrl experiments #5

Open
wants to merge 17 commits into
base: gymnasium
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 0 additions & 2 deletions examples/atari/reproduction/a3c/train_a3c.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,6 @@


def main():

parser = argparse.ArgumentParser()
parser.add_argument("--processes", type=int, default=16)
parser.add_argument("--env", type=str, default="BreakoutNoFrameskip-v4")
Expand Down Expand Up @@ -176,7 +175,6 @@ def phi(x):
)
)
else:

# Linearly decay the learning rate to zero
def lr_setter(env, agent, value):
for pg in agent.optimizer.param_groups:
Expand Down
2 changes: 0 additions & 2 deletions examples/atari/train_acer_ale.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,6 @@


def main():

parser = argparse.ArgumentParser()
parser.add_argument("processes", type=int)
parser.add_argument("--env", type=str, default="BreakoutNoFrameskip-v4")
Expand Down Expand Up @@ -185,7 +184,6 @@ def make_env(process_idx, test):
)
)
else:

# Linearly decay the learning rate to zero
def lr_setter(env, agent, value):
for pg in agent.optimizer.param_groups:
Expand Down
1 change: 0 additions & 1 deletion examples/atlas/train_soft_actor_critic_atlas.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,6 @@ def make_env(args, seed, test):


def main():

parser = argparse.ArgumentParser()
parser.add_argument(
"--outdir",
Expand Down
1 change: 0 additions & 1 deletion examples/gym/train_dqn_gym.py
Original file line number Diff line number Diff line change
Expand Up @@ -210,7 +210,6 @@ def make_env(idx=0, test=False):
)

elif not args.actor_learner:

print(
"WARNING: Since https://github.com/pfnet/pfrl/pull/112 we have started"
" setting `eval_during_episode=True` in this script, which affects the"
Expand Down
1 change: 0 additions & 1 deletion examples/mujoco/reproduction/ddpg/train_ddpg.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,6 @@


def main():

parser = argparse.ArgumentParser()
parser.add_argument(
"--outdir",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,6 @@


def main():

parser = argparse.ArgumentParser()
parser.add_argument(
"--outdir",
Expand Down
1 change: 0 additions & 1 deletion examples/mujoco/reproduction/td3/train_td3.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,6 @@


def main():

parser = argparse.ArgumentParser()
parser.add_argument(
"--outdir",
Expand Down
2 changes: 0 additions & 2 deletions examples/mujoco/reproduction/trpo/train_trpo.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,6 @@


def main():

parser = argparse.ArgumentParser()
parser.add_argument(
"--gpu", type=int, default=0, help="GPU device ID. Set to -1 to use CPUs only."
Expand Down Expand Up @@ -215,7 +214,6 @@ def ortho_init(layer, gain):
with open(os.path.join(args.outdir, "demo_scores.json"), "w") as f:
json.dump(eval_stats, f)
else:

pfrl.experiments.train_agent_with_evaluation(
agent=agent,
env=env,
Expand Down
1 change: 0 additions & 1 deletion pfrl/agents/a2c.py
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,6 @@ def __init__(
average_value_decay=0.999,
batch_states=batch_states,
):

self.model = model
if gpu is not None and gpu >= 0:
assert torch.cuda.is_available()
Expand Down
2 changes: 0 additions & 2 deletions pfrl/agents/a3c.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,6 @@ def __init__(
average_value_decay=0.999,
batch_states=batch_states,
):

# Globally shared model
self.shared_model = model

Expand Down Expand Up @@ -241,7 +240,6 @@ def observe(self, obs, reward, done, reset):
self._observe_eval(obs, reward, done, reset)

def _act_train(self, obs):

self.past_obs[self.t] = obs

with torch.no_grad():
Expand Down
5 changes: 0 additions & 5 deletions pfrl/agents/acer.py
Original file line number Diff line number Diff line change
Expand Up @@ -332,7 +332,6 @@ def __init__(
average_kl_decay=0.999,
logger=None,
):

# Globally shared model
self.shared_model = model

Expand Down Expand Up @@ -472,7 +471,6 @@ def compute_loss(
action_distribs_mu,
avg_action_distribs,
):

assert np.isscalar(R)
pi_loss = 0
Q_loss = 0
Expand Down Expand Up @@ -566,7 +564,6 @@ def update(
action_distribs_mu,
avg_action_distribs,
):

assert np.isscalar(R)
self.assert_shared_memory()

Expand Down Expand Up @@ -595,7 +592,6 @@ def update(
self.sync_parameters()

def update_from_replay(self):

if self.replay_buffer is None:
return

Expand Down Expand Up @@ -715,7 +711,6 @@ def observe(self, obs, reward, done, reset):
self._observe_eval(obs, reward, done, reset)

def _act_train(self, obs):

statevar = batch_states([obs], self.device, self.phi)

if self.recurrent:
Expand Down
1 change: 0 additions & 1 deletion pfrl/agents/al.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,6 @@ def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)

def _compute_y_and_t(self, exp_batch):

batch_state = exp_batch["state"]
batch_size = len(exp_batch["reward"])

Expand Down
3 changes: 0 additions & 3 deletions pfrl/agents/ddpg.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,6 @@ def __init__(
batch_states=batch_states,
burnin_action_func=None,
):

self.model = nn.ModuleList([policy, q_func])
if gpu is not None and gpu >= 0:
assert torch.cuda.is_available()
Expand Down Expand Up @@ -223,7 +222,6 @@ def update_from_episodes(self, episodes, errors_out=None):
batches.append(batch)

with self.model.state_reset(), self.target_model.state_reset():

# Since the target model is evaluated one-step ahead,
# its internal states need to be updated
self.target_q_function.update_state(
Expand All @@ -238,7 +236,6 @@ def update_from_episodes(self, episodes, errors_out=None):
self.critic_optimizer.update(lambda: critic_loss / max_epi_len)

with self.model.state_reset():

# Update actor through time
actor_loss = 0
for batch in batches:
Expand Down
1 change: 0 additions & 1 deletion pfrl/agents/double_dqn.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,6 @@ class DoubleDQN(dqn.DQN):
"""

def _compute_target_values(self, exp_batch):

batch_next_state = exp_batch["next_state"]

with evaluating(self.model):
Expand Down
1 change: 0 additions & 1 deletion pfrl/agents/double_pal.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,6 @@

class DoublePAL(pal.PAL):
def _compute_y_and_t(self, exp_batch):

batch_state = exp_batch["state"]
batch_size = len(exp_batch["reward"])

Expand Down
2 changes: 0 additions & 2 deletions pfrl/agents/dpp.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,6 @@ def _l_operator(self, qout):
raise NotImplementedError()

def _compute_target_values(self, exp_batch):

batch_next_state = exp_batch["next_state"]

if self.recurrent:
Expand All @@ -38,7 +37,6 @@ def _compute_target_values(self, exp_batch):
)

def _compute_y_and_t(self, exp_batch):

batch_state = exp_batch["state"]
batch_size = len(exp_batch["reward"])

Expand Down
31 changes: 29 additions & 2 deletions pfrl/agents/dqn.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,9 @@
import ctypes
import multiprocessing as mp
import multiprocessing.synchronize
import os
import time
import typing
from logging import Logger, getLogger
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple

Expand Down Expand Up @@ -33,10 +35,11 @@
recurrent_state_as_numpy,
)

from pdb import set_trace

def _mean_or_nan(xs: Sequence[float]) -> float:
"""Return its mean a non-empty sequence, numpy.nan for a empty one."""
return np.mean(xs) if xs else np.nan
return typing.cast(float, np.mean(xs)) if xs else np.nan


def compute_value_loss(
Expand Down Expand Up @@ -485,6 +488,13 @@ def _evaluate_model_and_update_recurrent_states(
batch_av = self.model(batch_xs)
return batch_av

def compute_q(self, batch_obs: Sequence[Any], batch_action: Sequence[Any]) -> Sequence[Any]:
with torch.no_grad(), evaluating(self.model):
batch_av = self._evaluate_model_and_update_recurrent_states(batch_obs)
q_values = batch_av.q_values
batch_q_values = q_values[torch.arange(q_values.shape[0]), batch_action]
return batch_q_values

def batch_act(self, batch_obs: Sequence[Any]) -> Sequence[Any]:
with torch.no_grad(), evaluating(self.model):
batch_av = self._evaluate_model_and_update_recurrent_states(batch_obs)
Expand All @@ -511,7 +521,6 @@ def _batch_observe_train(
batch_done: Sequence[bool],
batch_reset: Sequence[bool],
) -> None:

for i in range(len(batch_obs)):
self.t += 1
self._cumulative_steps += 1
Expand Down Expand Up @@ -790,6 +799,24 @@ def stop_episode(self) -> None:
if self.recurrent:
self.test_recurrent_states = None

def save_snapshot(self, dirname: str) -> None:
self.save(dirname)
torch.save(self.t, os.path.join(dirname, "t.pt"))
torch.save(self.optim_t, os.path.join(dirname, "optim_t.pt"))
torch.save(
self._cumulative_steps, os.path.join(dirname, "_cumulative_steps.pt")
)
self.replay_buffer.save(os.path.join(dirname, "replay_buffer.pkl"))

def load_snapshot(self, dirname: str) -> None:
self.load(dirname)
self.t = torch.load(os.path.join(dirname, "t.pt"))
self.optim_t = torch.load(os.path.join(dirname, "optim_t.pt"))
self._cumulative_steps = torch.load(
os.path.join(dirname, "_cumulative_steps.pt")
)
self.replay_buffer.load(os.path.join(dirname, "replay_buffer.pkl"))

def get_statistics(self):
return [
("average_q", _mean_or_nan(self.q_record)),
Expand Down
1 change: 0 additions & 1 deletion pfrl/agents/pal.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,6 @@ def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)

def _compute_y_and_t(self, exp_batch):

batch_state = exp_batch["state"]
batch_size = len(exp_batch["reward"])

Expand Down
3 changes: 0 additions & 3 deletions pfrl/agents/ppo.py
Original file line number Diff line number Diff line change
Expand Up @@ -115,7 +115,6 @@ def _add_log_prob_and_value_to_episodes(
obs_normalizer,
device,
):

dataset = list(itertools.chain.from_iterable(episodes))

# Compute v_pred and next_v_pred
Expand Down Expand Up @@ -533,7 +532,6 @@ def _update(self, dataset):
self.n_updates += 1

def _update_once_recurrent(self, episodes, mean_advs, std_advs):

assert std_advs is None or std_advs > 0

device = self.device
Expand Down Expand Up @@ -636,7 +634,6 @@ def _update_recurrent(self, dataset):
def _lossfun(
self, entropy, vs_pred, log_probs, vs_pred_old, log_probs_old, advs, vs_teacher
):

prob_ratio = torch.exp(log_probs - log_probs_old)

loss_policy = -torch.mean(
Expand Down
2 changes: 0 additions & 2 deletions pfrl/agents/reinforce.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,6 @@ def __init__(
max_grad_norm=None,
logger=None,
):

self.model = model
if gpu is not None and gpu >= 0:
assert torch.cuda.is_available()
Expand Down Expand Up @@ -103,7 +102,6 @@ def observe(self, obs, reward, done, reset):
self._observe_eval(obs, reward, done, reset)

def _act_train(self, obs):

batch_obs = self.batch_states([obs], self.device, self.phi)
if self.recurrent:
action_distrib, self.train_recurrent_states = one_step_forward(
Expand Down
1 change: 0 additions & 1 deletion pfrl/agents/soft_actor_critic.py
Original file line number Diff line number Diff line change
Expand Up @@ -119,7 +119,6 @@ def __init__(
temperature_optimizer_lr=None,
act_deterministically=True,
):

self.policy = policy
self.q_func1 = q_func1
self.q_func2 = q_func2
Expand Down
1 change: 0 additions & 1 deletion pfrl/agents/td3.py
Original file line number Diff line number Diff line change
Expand Up @@ -101,7 +101,6 @@ def __init__(
policy_update_delay=2,
target_policy_smoothing_func=default_target_policy_smoothing_func,
):

self.policy = policy
self.q_func1 = q_func1
self.q_func2 = q_func2
Expand Down
3 changes: 0 additions & 3 deletions pfrl/agents/trpo.py
Original file line number Diff line number Diff line change
Expand Up @@ -193,7 +193,6 @@ def __init__(
policy_step_size_stats_window=100,
logger=getLogger(__name__),
):

self.policy = policy
self.vf = vf
self.vf_optimizer = vf_optimizer
Expand Down Expand Up @@ -335,7 +334,6 @@ def _update_recurrent(self, dataset):
self._update_vf_recurrent(dataset)

def _update_vf_recurrent(self, dataset):

for epoch in range(self.vf_epochs):
random.shuffle(dataset)
for (
Expand All @@ -346,7 +344,6 @@ def _update_vf_recurrent(self, dataset):
self._update_vf_once_recurrent(minibatch)

def _update_vf_once_recurrent(self, episodes):

# Sort episodes desc by length for pack_sequence
episodes = sorted(episodes, key=len, reverse=True)

Expand Down
2 changes: 0 additions & 2 deletions pfrl/experiments/train_agent.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,6 @@ def train_agent(
eval_during_episode=False,
logger=None,
):

logger = logger or logging.getLogger(__name__)

episode_r = 0
Expand All @@ -52,7 +51,6 @@ def train_agent(
episode_len = 0
try:
while t < steps:

# a_t
action = agent.act(obs)
# o_{t+1}, r_{t+1}
Expand Down
Loading