Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Namespace-aware xarray.ufuncs #9776

Merged
merged 16 commits into from
Nov 18, 2024
Merged
Show file tree
Hide file tree
Changes from 9 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion xarray/__init__.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
from importlib.metadata import version as _version

from xarray import groupers, testing, tutorial
from xarray import groupers, testing, tutorial, ufuncs
from xarray.backends.api import (
load_dataarray,
load_dataset,
Expand Down Expand Up @@ -69,6 +69,7 @@
"groupers",
"testing",
"tutorial",
"ufuncs",
# Top-level functions
"align",
"apply_ufunc",
Expand Down
12 changes: 12 additions & 0 deletions xarray/tests/test_dask.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
import pytest

import xarray as xr
import xarray.ufuncs as xu
from xarray import DataArray, Dataset, Variable
from xarray.core import duck_array_ops
from xarray.core.duck_array_ops import lazy_array_equiv
Expand Down Expand Up @@ -274,6 +275,17 @@ def test_bivariate_ufunc(self):
self.assertLazyAndAllClose(np.maximum(u, 0), np.maximum(v, 0))
self.assertLazyAndAllClose(np.maximum(u, 0), np.maximum(0, v))

def test_univariate_xufunc(self):
u = self.eager_var
v = self.lazy_var
self.assertLazyAndAllClose(np.sin(u), xu.sin(v))

def test_bivariate_xufunc(self):
u = self.eager_var
v = self.lazy_var
self.assertLazyAndAllClose(np.maximum(u, 0), xu.maximum(v, 0))
self.assertLazyAndAllClose(np.maximum(u, 0), xu.maximum(0, v))

def test_compute(self):
u = self.eager_var
v = self.lazy_var
Expand Down
8 changes: 8 additions & 0 deletions xarray/tests/test_sparse.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
import pytest

import xarray as xr
import xarray.ufuncs as xu
from xarray import DataArray, Variable
from xarray.namedarray.pycompat import array_type
from xarray.tests import assert_equal, assert_identical, requires_dask
Expand Down Expand Up @@ -294,6 +295,13 @@ def test_bivariate_ufunc(self):
assert_sparse_equal(np.maximum(self.data, 0), np.maximum(self.var, 0).data)
assert_sparse_equal(np.maximum(self.data, 0), np.maximum(0, self.var).data)

def test_univariate_xufunc(self):
assert_sparse_equal(xu.sin(self.var).data, np.sin(self.data))

def test_bivariate_xufunc(self):
assert_sparse_equal(xu.multiply(self.var, 0).data, np.multiply(self.data, 0))
assert_sparse_equal(xu.multiply(0, self.var).data, np.multiply(0, self.data))

def test_repr(self):
expected = dedent(
"""\
Expand Down
112 changes: 111 additions & 1 deletion xarray/tests/test_ufuncs.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,14 @@
from __future__ import annotations

import pickle
from unittest.mock import patch

import numpy as np
import pytest

import xarray as xr
from xarray.tests import assert_allclose, assert_array_equal, mock
import xarray.ufuncs as xu
from xarray.tests import assert_allclose, assert_array_equal, mock, requires_dask
from xarray.tests import assert_identical as assert_identical_


Expand Down Expand Up @@ -155,3 +159,109 @@ def test_gufuncs():
fake_gufunc = mock.Mock(signature="(n)->()", autospec=np.sin)
with pytest.raises(NotImplementedError, match=r"generalized ufuncs"):
xarray_obj.__array_ufunc__(fake_gufunc, "__call__", xarray_obj)


class DuckArray(np.ndarray):
# Minimal subclassed duck array with its own self-contained namespace,
# which implements a few ufuncs
def __new__(cls, array):
obj = np.asarray(array).view(cls)
return obj

def __array_namespace__(self):
return DuckArray

@staticmethod
def sin(x):
return np.sin(x)

@staticmethod
def add(x, y):
return x + y


class DuckArray2(DuckArray):
def __array_namespace__(self):
return DuckArray2


class TestXarrayUfuncs:
@pytest.fixture(autouse=True)
def setUp(self):
self.x = xr.DataArray([1, 2, 3])
self.xd = xr.DataArray(DuckArray([1, 2, 3]))
self.xd2 = xr.DataArray(DuckArray2([1, 2, 3]))
self.xt = xr.DataArray(np.datetime64("2021-01-01", "ns"))

@pytest.mark.filterwarnings("ignore::RuntimeWarning")
@pytest.mark.parametrize("name", xu.__all__)
def test_ufuncs(self, name, request):
xu_func = getattr(xu, name)
if isinstance(xu_func, xu._UnavailableUfunc):
pytest.xfail(f"Ufunc {name} is not available in numpy {np.__version__}.")

np_func = getattr(np, name)

if name == "isnat":
args = (self.xt,)
elif hasattr(np_func, "nin") and np_func.nin == 2:
args = (self.x, self.x)
else:
args = (self.x,)

expected = np_func(*args)
actual = xu_func(*args)

if name in ["angle", "iscomplex"]:
np.testing.assert_equal(expected, actual.values)
else:
assert_identical(actual, expected)

def test_ufunc_pickle(self):
a = 1.0
cos_pickled = pickle.loads(pickle.dumps(xu.cos))
assert_identical(cos_pickled(a), xu.cos(a))

def test_ufunc_scalar(self):
actual = xu.sin(1)
assert isinstance(actual, float)

def test_ufunc_duck_array_dataarray(self):
actual = xu.sin(self.xd)
assert isinstance(actual.data, DuckArray)

def test_ufunc_duck_array_variable(self):
actual = xu.sin(self.xd.variable)
assert isinstance(actual.data, DuckArray)

def test_ufunc_duck_array_dataset(self):
ds = xr.Dataset({"a": self.xd})
actual = xu.sin(ds)
assert isinstance(actual.a.data, DuckArray)

@requires_dask
def test_ufunc_duck_dask(self):
import dask.array as da

x = xr.DataArray(da.from_array(DuckArray(np.array([1, 2, 3]))))
actual = xu.sin(x)
assert isinstance(actual.data._meta, DuckArray)

@requires_dask
@pytest.mark.xfail(reason="dask ufuncs currently dispatch to numpy")
def test_ufunc_duck_dask_no_array_ufunc(self):
import dask.array as da

# dask ufuncs currently only preserve duck arrays that implement __array_ufunc__
with patch.object(DuckArray, "__array_ufunc__", new=None, create=True):
x = xr.DataArray(da.from_array(DuckArray(np.array([1, 2, 3]))))
actual = xu.sin(x)
assert isinstance(actual.data._meta, DuckArray)

def test_ufunc_mixed_arrays_compatible(self):
actual = xu.add(self.xd, self.x)
assert isinstance(actual.data, DuckArray)

def test_ufunc_mixed_arrays_incompatible(self):
with pytest.raises(ValueError, match=r"Mixed array types"):
xu.add(self.xd, self.xd2)
Loading
Loading