Skip to content

Commit

Permalink
update to graph-compatible code
Browse files Browse the repository at this point in the history
  • Loading branch information
ljwolf committed Aug 15, 2024
1 parent 9ca259d commit 18f369c
Show file tree
Hide file tree
Showing 2 changed files with 33 additions and 19 deletions.
14 changes: 10 additions & 4 deletions esda/moran_local_mv.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ def __init__(
y : (N,1) array
array of data that is the targeted "outcome" covariate
to compute the multivariable Moran's I
X : (N,3) array
X : (N,p) array
array of data that is used as "confounding factors"
to account for their covariance with Y.
W : (N,N) weights object
Expand Down Expand Up @@ -83,7 +83,7 @@ def __init__(
if isinstance(W, Graph):
W = W.transform("R")
else:
W.transform = "r" # TODO: as a function for graph
W.transform = "r"
y = y - y.mean()
if unit_scale:
y /= y.std()
Expand Down Expand Up @@ -154,7 +154,10 @@ def __init__(
self.quads_ = self._uvquads_[:, 1]

def _make_data(self, z, X, W):
Wz = lag_spatial(W, z)
if isinstance(W, Graph):
Wz = W.lag(z)
else:
Wz = lag_spatial(W, z)
if X is not None:
D = np.hstack((np.ones(z.shape), z, X))
P = X.shape[1] + 1
Expand Down Expand Up @@ -368,7 +371,10 @@ def _crand(self):
lisas = np.zeros((self.connectivity.n, self.permutations))
n_1 = self.connectivity.n - 1
prange = list(range(self.permutations))
k = self.connectivity.cardinalities.max() + 1
if isinstance(self.connectivity, Graph):
k = self.connectivity.cardinalities.max() + 1
else:
k = self.connectivity.max_neighbors + 1
nn = self.connectivity.n - 1
rids = np.array([np.random.permutation(nn)[0:k] for i in prange])
ids = np.arange(self.connectivity.n)
Expand Down
38 changes: 23 additions & 15 deletions esda/tests/test_moran_local_mv.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
import geopandas
import pytest
from libpysal.weights import Queen
from libpysal.graph import Graph
from sklearn.linear_model import TheilSenRegressor
from esda.moran_local_mv import Partial_Moran_Local, Auxiliary_Moran_Local
from esda.moran import Moran_Local_BV
Expand All @@ -12,21 +13,24 @@

y = df.HH_INC.values.reshape(-1,1)
X = df.HSG_VAL.values.reshape(-1,1)
w = Queen.from_dataframe(df)
w.transform = 'r'
w_classic = Queen.from_dataframe(df)
w_classic.transform = 'r'
g = Graph.build_contiguity(df).transform("r")

def test_partial_runs():
pytestmark = pytest.mark.parametrize("w", [g, w_classic])

def test_partial_runs(w):
"""Check if the class computes successfully in a default configuration"""
m = Partial_Moran_Local(y,X,w, permutations=1)
# done, just check if it runs

def test_partial_accuracy():
def test_partial_accuracy(w):
"""Check if the class outputs expected results at a given seed"""
numpy.random.seed(111221)
m = Partial_Moran_Local(y,X,w, permutations=10)
# compute result by hand
zy = (y - y.mean())/y.std()
wz = (w.sparse * zy)
wz = (w.sparse @ zy)
zx = (X - X.mean(axis=0))/X.std(axis=0)
rho = numpy.corrcoef(zy.squeeze(), zx.squeeze())[0,1]
left = zy - rho * zx
Expand All @@ -45,7 +49,7 @@ def test_partial_accuracy():
is_odd_label = m.labels_ % 2
numpy.testing.assert_equal(is_cluster, is_odd_label)

def test_partial_unscaled():
def test_partial_unscaled(w):
"""Check if the variance scaling behaves as expected"""
m = Partial_Moran_Local(y,X,w, permutations=0, unit_scale=True)
m2 = Partial_Moran_Local(y,X,w, permutations=0, unit_scale=False)
Expand All @@ -55,33 +59,35 @@ def test_partial_unscaled():
assert s1y > s2y, "variance is incorrectly scaled for y"
assert s1x < s2x, "variance is incorrectly scaled for x"

def test_partial_uvquads():
def test_partial_uvquads(w):
"""Check that the quadrant decisions vary correctly with the inputs"""
m = Partial_Moran_Local(y,X,w, permutations=0, mvquads=False)
bv = Moran_Local_BV(y,X,w,permutations=0)
# TODO: this currently fails, and it should pass. I am probably mis-calculating the bivariate quadrants for this option, and need to correct the code.
numpy.testing.assert_array_equal(m.quads_, bv.q)

def test_aux_runs():
def test_aux_runs(w):
print(type(w), w.transform)
"""Check that the class completes successfully in a default configuration"""
a = Auxiliary_Moran_Local(y,X,w, permutations=1)
a = Auxiliary_Moran_Local(y,X, w, permutations=1)
#done, just check if it runs

def test_aux_accuracy():
def test_aux_accuracy(w):
print(type(w), w.transform)
"""Check that the class outputs expected values for a given seed"""
numpy.random.seed(111221)
a = Auxiliary_Moran_Local(y,X,w, permutations=10)

# compute result by hand
zy = (y - y.mean())/y.std()
wz = (w.sparse * zy)
wz = (w.sparse @ zy)
zx = (X - X.mean(axis=0))/X.std(axis=0)
wzx = w.sparse * zx
wzx = w.sparse @ zx
rho = numpy.corrcoef(zy.squeeze(), zx.squeeze())[0,1]
mean = zy * wz - rho * zx * wz - rho * zy * wzx + rho**2 * zx * wzx
scale = (w.n-1) / (w.n * (1 - rho**2))

manual = (mean * scale).squeeze()
manual = numpy.asarray(mean * scale).squeeze()
# check values, may not be identical because of the
# matrix inversion least squares estimator used in scikit
numpy.testing.assert_allclose(manual, a.associations_)
Expand All @@ -94,15 +100,17 @@ def test_aux_accuracy():
is_odd_label = (a.labels_ % 2).astype(bool)
numpy.testing.assert_equal(is_cluster, is_odd_label)

def test_aux_unscaled():
def test_aux_unscaled(w):
print(type(w), w.transform)
"""Check that the variance scaling behaves as expected"""
a = Auxiliary_Moran_Local(y,X/10000,w, permutations=0, unit_scale=True)
a2 = Auxiliary_Moran_Local(y,X,w, permutations=0, unit_scale=False)
assert (a.partials_.std(axis=0) < a2.partials_.std(axis=0)).all(), (
"variance is not scaled correctly in partial regression."
)

def test_aux_transformer():
def test_aux_transformer(w):
print(type(w), w.transform)
"""Check that an alternative regressor can be used to calculate y|X"""
a = Auxiliary_Moran_Local(y,X,w, permutations=0, transformer=TheilSenRegressor)
# done, should just complete

0 comments on commit 18f369c

Please sign in to comment.