-
Notifications
You must be signed in to change notification settings - Fork 126
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[WIP] add a compressible convection problem (#293)
this also adds an ambient upper boundary condition
- Loading branch information
Showing
4 changed files
with
188 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,110 @@ | ||
"""A heat source in a layer at some height above the bottom will drive | ||
convection in an adiabatically stratified atmosphere.""" | ||
|
||
import numpy as np | ||
|
||
from pyro.util import msg | ||
|
||
DEFAULT_INPUTS = "inputs.convection" | ||
|
||
PROBLEM_PARAMS = {"convection.dens_base": 10.0, # density at the base of the atmosphere | ||
"convection.scale_height": 4.0, # scale height of the isothermal atmosphere | ||
"convection.y_height": 2.0, | ||
"convection.thickness": 0.25, | ||
"convection.e_rate": 0.1, | ||
"convection.dens_cutoff": 0.01} | ||
|
||
|
||
def init_data(my_data, rp): | ||
""" initialize the bubble problem """ | ||
|
||
if rp.get_param("driver.verbose"): | ||
msg.bold("initializing the bubble problem...") | ||
|
||
# get the density, momenta, and energy as separate variables | ||
dens = my_data.get_var("density") | ||
xmom = my_data.get_var("x-momentum") | ||
ymom = my_data.get_var("y-momentum") | ||
ener = my_data.get_var("energy") | ||
|
||
gamma = rp.get_param("eos.gamma") | ||
|
||
grav = rp.get_param("compressible.grav") | ||
|
||
scale_height = rp.get_param("convection.scale_height") | ||
dens_base = rp.get_param("convection.dens_base") | ||
dens_cutoff = rp.get_param("convection.dens_cutoff") | ||
|
||
# initialize the components, remember, that ener here is | ||
# rho*eint + 0.5*rho*v**2, where eint is the specific | ||
# internal energy (erg/g) | ||
xmom[:, :] = 0.0 | ||
ymom[:, :] = 0.0 | ||
dens[:, :] = dens_cutoff | ||
|
||
# set the density to be stratified in the y-direction | ||
myg = my_data.grid | ||
|
||
p = myg.scratch_array() | ||
|
||
pres_base = scale_height*dens_base*abs(grav) | ||
|
||
for j in range(myg.jlo, myg.jhi+1): | ||
profile = 1.0 - (gamma-1.0)/gamma * myg.y[j]/scale_height | ||
if profile > 0.0: | ||
dens[:, j] = max(dens_base*(profile)**(1.0/(gamma-1.0)), | ||
dens_cutoff) | ||
else: | ||
dens[:, j] = dens_cutoff | ||
|
||
if j == myg.jlo: | ||
p[:, j] = pres_base | ||
elif dens[0, j] <= dens_cutoff + 1.e-30: | ||
p[:, j] = p[:, j-1] | ||
else: | ||
#p[:, j] = p[:, j-1] + 0.5*myg.dy*(dens[:, j] + dens[:, j-1])*grav | ||
p[:, j] = pres_base * (dens[:, j] / dens_base)**gamma | ||
|
||
# set the ambient conditions | ||
my_data.set_aux("ambient_rho", dens_cutoff) | ||
my_data.set_aux("ambient_u", 0.0) | ||
my_data.set_aux("ambient_v", 0.0) | ||
my_data.set_aux("ambient_p", p.v().min()) | ||
|
||
# set the energy (P = cs2*dens) -- assuming zero velocity | ||
ener[:, :] = p[:, :]/(gamma - 1.0) | ||
|
||
# pairs of random numbers between [-1, 1] | ||
vel_pert = 2.0 * np.random.random_sample((myg.qx, myg.qy, 2)) - 1 | ||
|
||
cs = np.sqrt(gamma * p / dens) | ||
|
||
# make vel_pert have M < 0.05 | ||
vel_pert[:, :, 0] *= 0.05 * cs | ||
vel_pert[:, :, 1] *= 0.05 * cs | ||
|
||
idx = dens > 2 * dens_cutoff | ||
xmom[idx] = dens[idx] * vel_pert[idx, 0] | ||
ymom[idx] = dens[idx] * vel_pert[idx, 1] | ||
|
||
ener[:, :] += 0.5 * (xmom[:, :]**2 + ymom[:, :]**2) / dens[:, :] | ||
|
||
|
||
def source_terms(myg, U, ivars, rp): | ||
"""source terms to be added to the evolution""" | ||
|
||
S = myg.scratch_array(nvar=ivars.nvar) | ||
|
||
y_height = rp.get_param("convection.y_height") | ||
|
||
dist = np.abs(myg.y2d - y_height) | ||
|
||
e_rate = rp.get_param("convection.e_rate") | ||
thick = rp.get_param("convection.thickness") | ||
|
||
S[:, :, ivars.iener] = U[:, :, ivars.idens] * e_rate * np.exp(-(dist / thick)**2) | ||
return S | ||
|
||
|
||
def finalize(): | ||
""" print out any information to the user at the end of the run """ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
# simple inputs files for the four-corner problem. | ||
|
||
[driver] | ||
max_steps = 10000 | ||
tmax = 10.0 | ||
|
||
|
||
[io] | ||
basename = convection_ | ||
n_out = 100 | ||
|
||
|
||
[mesh] | ||
nx = 128 | ||
ny = 384 | ||
xmax = 4.0 | ||
ymax = 12.0 | ||
|
||
xlboundary = outflow | ||
xrboundary = outflow | ||
|
||
ylboundary = reflect | ||
yrboundary = ambient | ||
|
||
|
||
[convection] | ||
scale_height = 2.0 | ||
dens_base = 1000.0 | ||
dens_cutoff = 1.e-3 | ||
|
||
e_rate = 0.5 | ||
|
||
|
||
[compressible] | ||
grav = -2.0 | ||
|
||
limiter = 2 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters