Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix end of epoch StatefulDataLoader restart #1439

Open
wants to merge 22 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
155 changes: 153 additions & 2 deletions test/stateful_dataloader/test_state_dict.py
Original file line number Diff line number Diff line change
Expand Up @@ -1314,7 +1314,7 @@ def test(self):
dataset=dataset,
num_workers=num_workers,
collate_fn=identity,
multiprocessing_context="forkserver" if IS_MACOS and num_workers else None,
multiprocessing_context=("forkserver" if IS_MACOS and num_workers else None),
)
it = iter(dl)
# Fetch at least one batch from each worker
Expand All @@ -1325,7 +1325,10 @@ def test(self):
if num_workers > 0:
for i in range(num_workers):
# Ensure worker state is stored only once if the dataset is also the iterator
self.assertEqual(state_dict["_snapshot"]["_worker_snapshots"][f"worker_{i}"]["dataset_state"], None)
self.assertEqual(
state_dict["_snapshot"]["_worker_snapshots"][f"worker_{i}"]["dataset_state"],
None,
)
self.assertTrue(
state_dict["_snapshot"]["_worker_snapshots"][f"worker_{i}"]["fetcher_state"][
"dataset_iter_state"
Expand Down Expand Up @@ -1441,6 +1444,154 @@ def test_fast_state_dict_request_skip_steps(self) -> None:
self._run_test(17, 19)


class TestMultiEpochSDL_shard0(TestCase):
def get_map_dl(self, data_size, num_workers, batch_size, shuffle):
dataset = DummyMapDataset(data_size, shuffle=False)
return StatefulDataLoader(
dataset=dataset,
num_workers=num_workers,
batch_size=batch_size,
shuffle=shuffle,
multiprocessing_context=("forkserver" if IS_MACOS and num_workers else None),
)

def _run(self, data_size, num_workers, batch_size, shuffle):
dl1 = self.get_map_dl(
data_size=data_size,
num_workers=num_workers,
batch_size=batch_size,
shuffle=shuffle,
)
# Run through the dataloader for 2 epochs and count the number of items yielded
num_items_yielded = 0
dl1_items = []
for _ in range(2):
for batch in dl1:
dl1_items.append(batch)
num_items_yielded += 1
# Save the state dict
state_dict = dl1.state_dict()
# Create a new StatefulDataLoader instance and load the state dict
new_dl1 = self.get_map_dl(
data_size=data_size,
num_workers=num_workers,
batch_size=batch_size,
shuffle=shuffle,
)
new_dl1.load_state_dict(state_dict)
# Run through the new dataloader for another 2 epochs and count the number of items yielded
additional_num_items_yielded = 0
for i in range(2):
epoch_num_items_yielded = 0
for batch in new_dl1:
dl1_items.append(batch)
epoch_num_items_yielded += 1
additional_num_items_yielded += epoch_num_items_yielded
# Check that the total number of items yielded is correct
self.assertEqual(num_items_yielded + additional_num_items_yielded, data_size * 4)

# now run a second dataloder for 4 epochs and check if the order is same.
dl2 = self.get_map_dl(
data_size=data_size,
num_workers=num_workers,
batch_size=batch_size,
shuffle=shuffle,
)
dl2_items = []
for _ in range(4):
for batch in dl2:
dl2_items.append(batch)

self.assertEqual(dl1_items, dl2_items)

def test_main_process(self):
self._run(100, 0, 1, False)

def test_multiprocess(self):
self._run(100, 2, 1, False)

def test_main_process_shuffle(self):
self._run(100, 0, 1, True)

def test_multiprocess_shuffle(self):
self._run(100, 2, 1, True)


class TestEndOfEpochBehavior_shard0(TestCase):
def get_map_dl(self, data_size, num_workers, batch_size, shuffle):
dataset = DummyMapDataset(data_size, shuffle=False)
return StatefulDataLoader(
dataset=dataset,
num_workers=num_workers,
batch_size=batch_size,
shuffle=shuffle,
multiprocessing_context=("forkserver" if IS_MACOS and num_workers else None),
)

def _count_items_yielded(self, data_loader: StatefulDataLoader) -> int:
num_items_yielded = 0
for batch in data_loader:
num_items_yielded += 1
return num_items_yielded

def _run(self, data_size, num_workers, batch_size, shuffle):
dl = self.get_map_dl(
data_size=data_size,
num_workers=num_workers,
batch_size=batch_size,
shuffle=shuffle,
)
# Run through the dataloader for 1 epoch and count the number of items yielded
num_items_yielded = 0

for batch in dl:
num_items_yielded += 1
sd_in = dl.state_dict()
sd_out = dl.state_dict()

self.assertEqual(num_items_yielded, data_size)

# Create a new StatefulDataLoader instance and load the state dict saved before the end of epoch
dl_sd_in = self.get_map_dl(
data_size=data_size,
num_workers=num_workers,
batch_size=batch_size,
shuffle=shuffle,
)
dl_sd_in.load_state_dict(sd_in)

# Run through the new dataloader for 1 epoch and count the number of items yielded
# num_items_yielded should be 0 since the state dict was saved before the end of epoch
num_items_yielded = self._count_items_yielded(dl_sd_in)
self.assertEqual(num_items_yielded, 0)

# Create a new StatefulDataLoader instance and load the state dict saved after the end of epoch
dl_sd_out = self.get_map_dl(
data_size=data_size,
num_workers=num_workers,
batch_size=batch_size,
shuffle=shuffle,
)
dl_sd_out.load_state_dict(sd_out)

# Run through the new dataloader for 1 epoch and count the number of items yielded
# num_items_yielded should be data_size since the state dict was saved after the end of epoch
num_items_yielded = self._count_items_yielded(dl_sd_out)
self.assertEqual(num_items_yielded, data_size)

def test_main_process(self):
self._run(100, 0, 1, False)

def test_multiprocess(self):
self._run(100, 2, 1, False)

def test_main_process_shuffle(self):
self._run(100, 0, 1, True)

def test_multiprocess_shuffle(self):
self._run(100, 2, 1, True)


class TestMultiEpochState_shard0(TestCase):
def get_iterable_dl(self, pw, num_workers):
data_size = [25, 50, 100, 75]
Expand Down
Loading