-
Notifications
You must be signed in to change notification settings - Fork 491
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Decouple and run MLP runs for comparisons
- Loading branch information
1 parent
bb1dbaf
commit b65e408
Showing
7 changed files
with
192 additions
and
149 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,164 +1,57 @@ | ||
import argparse | ||
from contextlib import contextmanager | ||
import os | ||
import sys | ||
from typing import Optional | ||
import unittest | ||
|
||
import numpy as np | ||
import torch | ||
from torch import nn | ||
import torch.optim as optim | ||
|
||
import args_parse | ||
import torch_xla | ||
import torch_xla.core.xla_model as xm | ||
import torch_xla.debug.profiler as xp | ||
import torch_xla.distributed.parallel_loader as pl | ||
import torch_xla.distributed.spmd as xs | ||
import torch_xla.runtime as xr | ||
import torch_xla.utils.utils as xu | ||
from torch_xla.distributed.spmd import Mesh | ||
from torch_xla.utils.checkpoint import checkpoint | ||
import test_xla_sharding_base | ||
|
||
parent_folder = os.path.dirname(os.path.dirname(__file__)) | ||
sys.path.append(parent_folder) | ||
from utils.train_spmd_linear_model import train_and_evaluate | ||
|
||
MODEL_OPTS = { | ||
'--sharding': { | ||
'choices': ['batch', 'megatron-lm', 'fsdp'], | ||
'nargs': '+', | ||
'default': [], | ||
}, | ||
'--input_dim': { | ||
'type': int, | ||
'default': 16834, | ||
}, | ||
'--train_dataset_len': { | ||
'type': int, | ||
'default': 1024 * 8, | ||
}, | ||
'--use_gradient_checkpointing': { | ||
'action': 'store_true', | ||
} | ||
} | ||
SKIP_GRADIENT_CHECKPOINTING: bool = False | ||
|
||
FLAGS = {} | ||
PROFILER_SERVER = None | ||
|
||
@contextmanager | ||
def extended_argv(args): | ||
original_argv = sys.argv[:] | ||
sys.argv.extend(args) | ||
try: | ||
yield | ||
finally: | ||
sys.argv = original_argv | ||
|
||
class SimpleLinear(nn.Module): | ||
NUM_CLASSES = 3 | ||
|
||
def __init__(self): | ||
super().__init__() | ||
self.layers = torch.nn.Sequential( | ||
nn.Linear(FLAGS.input_dim, FLAGS.input_dim // 2), | ||
nn.ReLU(), | ||
nn.Linear(FLAGS.input_dim // 2, 3), | ||
# # Add an additional 3x3 layer at the end to ensure the final layer | ||
# # is not sharded. | ||
nn.Linear(3, self.NUM_CLASSES), | ||
) | ||
class TestSPMDLinearModel(test_xla_sharding_base.XlaShardingTest): | ||
|
||
def forward(self, x): | ||
if FLAGS.use_gradient_checkpointing: | ||
for n_l, layer in enumerate(self.layers): | ||
# Apply gradient checkpointing for reduced memory footprint. | ||
# This would result in increased computation cost. | ||
if n_l > 0: | ||
x = checkpoint(layer, x) | ||
else: | ||
x = layer(x) | ||
else: | ||
x = self.layers(x) | ||
return x | ||
def test_basic(self): | ||
print('Training loop with baseline') | ||
with extended_argv([]): | ||
baseline_losses, baseline_result = train_and_evaluate() | ||
# Verify that the model losses are not zero. | ||
assert all(loss != 0 for loss in baseline_losses) | ||
# Verify that the model produces non-zero outputs. | ||
assert not torch.any(baseline_result == 0) | ||
|
||
|
||
def train(): | ||
device = xm.xla_device() | ||
torch.manual_seed(42) | ||
model = SimpleLinear().to(device) | ||
print('===> Preparing data..') | ||
train_loader = xu.SampleGenerator( | ||
data=(torch.randn(FLAGS.batch_size, FLAGS.input_dim), | ||
torch.randint( | ||
0, model.NUM_CLASSES, (FLAGS.batch_size,), dtype=torch.int64)), | ||
sample_count=FLAGS.train_dataset_len // FLAGS.batch_size) | ||
|
||
num_devices = xr.global_runtime_device_count() | ||
print(f'num_devices: {num_devices}') | ||
# Define a mesh with all devices along one axis | ||
mesh_shape = (num_devices, 1) | ||
device_ids = np.arange(num_devices) | ||
mesh = Mesh(device_ids, mesh_shape, ('x', 'y')) | ||
|
||
if 'batch' in FLAGS.sharding: | ||
train_loader = pl.MpDeviceLoader( | ||
train_loader, device, input_sharding=xs.ShardingSpec(mesh, (0, 1))) | ||
|
||
if 'fsdp' in FLAGS.sharding: | ||
train_loader = pl.MpDeviceLoader( | ||
train_loader, device, input_sharding=xs.ShardingSpec(mesh, (0, 1))) | ||
print('Sharding model weights') | ||
# Shard the weights according to their 0th dim | ||
xs.mark_sharding(model.layers[0].weight, mesh, (0, 1)) | ||
xs.mark_sharding(model.layers[2].weight, mesh, (0, 1)) | ||
|
||
if 'megatron-lm' in FLAGS.sharding: | ||
print('Sharding model weights') | ||
# Shard the first layer's weights row-wise | ||
xs.mark_sharding(model.layers[0].weight, mesh, (0, 1)) | ||
# Shard the second layer's weights column-wise | ||
xs.mark_sharding(model.layers[2].weight, mesh, (1, 0)) | ||
|
||
optimizer = optim.SGD(model.parameters(), lr=FLAGS.lr) | ||
|
||
loss_fn = nn.CrossEntropyLoss() | ||
|
||
def train_loop_fn(loader, epoch): | ||
model.train() | ||
for step, (data, target) in enumerate(loader): | ||
with xp.StepTrace('train_linear_model'): | ||
with xp.Trace('build_graph'): | ||
x = data.to(device) | ||
y = target.to(device) | ||
optimizer.zero_grad() | ||
output = model(x) | ||
loss = loss_fn(output, y) | ||
losses.append(loss.clone().detach()) | ||
loss.backward() | ||
optimizer.step() | ||
xm.mark_step() | ||
if step % FLAGS.log_steps == 0: | ||
print(f"Epoch {epoch} step {step} loss {loss}") | ||
|
||
losses = [] | ||
for epoch in range(FLAGS.num_epochs): | ||
train_loop_fn(train_loader, epoch) | ||
return losses, model | ||
|
||
|
||
def train_and_evaluate(): | ||
default_config = { | ||
'batch_size': 128, | ||
'num_epochs': 1, | ||
'lr': 0.1, | ||
'log_steps': 8, | ||
'opts': MODEL_OPTS.items() | ||
} | ||
|
||
global PROFILER_SERVER, FLAGS | ||
FLAGS = args_parse.parse_common_options(**default_config) | ||
if FLAGS.profile: | ||
PROFILER_SERVER = xp.start_server(FLAGS.profiler_port) | ||
xr.use_spmd(auto=FLAGS.auto_spmd) | ||
print('Start training loop...') | ||
losses, m = train() | ||
t = torch.randn(10, FLAGS.input_dim).to(xm.xla_device()) | ||
return [loss.cpu().item() for loss in losses], m(t).cpu() | ||
if not SKIP_GRADIENT_CHECKPOINTING: | ||
print('Training loop with gradient checkpointing') | ||
with extended_argv(['--use_gradient_checkpointing']): | ||
checkpointing_losses, checkpointing_result = train_and_evaluate() | ||
# Verify that the runs match with and without checkpointing. | ||
assert torch.allclose(baseline_result, checkpointing_result) | ||
assert all( | ||
torch.allclose(baseline_loss, checkpointing_loss) | ||
for baseline_loss, checkpointing_loss in zip( | ||
baseline_losses, checkpointing_losses)) | ||
|
||
|
||
if __name__ == '__main__': | ||
losses, result = train_and_evaluate() | ||
# Verify that the model losses are not zero. | ||
assert all(loss != 0 for loss in losses) | ||
# Verify that the model produces non-zero outputs. | ||
assert torch.all(result != 0) | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--skip-gradient-checkpointing', action='store_true') | ||
parsed_args, remaining_argv = parser.parse_known_args() | ||
SKIP_GRADIENT_CHECKPOINTING = parsed_args.skip_gradient_checkpointing | ||
test = unittest.main(argv=[sys.argv[0]] + remaining_argv) | ||
sys.exit(0 if test.result.wasSuccessful() else 1) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,152 @@ | ||
import sys | ||
from typing import Optional | ||
|
||
import numpy as np | ||
import torch | ||
from torch import nn | ||
import torch.optim as optim | ||
|
||
import args_parse | ||
import torch_xla | ||
import torch_xla.core.xla_model as xm | ||
import torch_xla.debug.profiler as xp | ||
import torch_xla.distributed.parallel_loader as pl | ||
import torch_xla.distributed.spmd as xs | ||
import torch_xla.runtime as xr | ||
import torch_xla.utils.utils as xu | ||
from torch_xla.distributed.spmd import Mesh | ||
from torch_xla.utils.checkpoint import checkpoint | ||
|
||
MODEL_OPTS = { | ||
'--sharding': { | ||
'choices': ['batch', 'megatron-lm', 'fsdp'], | ||
'nargs': '+', | ||
'default': [], | ||
}, | ||
'--input_dim': { | ||
'type': int, | ||
'default': 16834, | ||
}, | ||
'--train_dataset_len': { | ||
'type': int, | ||
'default': 1024 * 8, | ||
}, | ||
'--use_gradient_checkpointing': { | ||
'action': 'store_true', | ||
} | ||
} | ||
|
||
FLAGS = {} | ||
PROFILER_SERVER = None | ||
|
||
|
||
class SimpleLinear(nn.Module): | ||
NUM_CLASSES = 3 | ||
|
||
def __init__(self): | ||
super().__init__() | ||
self.layers = torch.nn.Sequential( | ||
nn.Linear(FLAGS.input_dim, FLAGS.input_dim // 2), | ||
nn.ReLU(), | ||
nn.Linear(FLAGS.input_dim // 2, 3), | ||
# # Add an additional 3x3 layer at the end to ensure the final layer | ||
# # is not sharded. | ||
nn.Linear(3, self.NUM_CLASSES), | ||
) | ||
|
||
def forward(self, x): | ||
if FLAGS.use_gradient_checkpointing: | ||
for n_l, layer in enumerate(self.layers): | ||
# Apply gradient checkpointing for reduced memory footprint. | ||
# This would result in increased computation cost. | ||
if n_l > 0: | ||
x = checkpoint(layer, x) | ||
else: | ||
x = layer(x) | ||
else: | ||
x = self.layers(x) | ||
return x | ||
|
||
|
||
def train(): | ||
device = xm.xla_device() | ||
torch.manual_seed(42) | ||
model = SimpleLinear().to(device) | ||
print('===> Preparing data..') | ||
train_loader = xu.SampleGenerator( | ||
data=(torch.randn(FLAGS.batch_size, FLAGS.input_dim), | ||
torch.randint( | ||
0, model.NUM_CLASSES, (FLAGS.batch_size,), dtype=torch.int64)), | ||
sample_count=FLAGS.train_dataset_len // FLAGS.batch_size) | ||
|
||
num_devices = xr.global_runtime_device_count() | ||
print(f'num_devices: {num_devices}') | ||
# Define a mesh with all devices along one axis | ||
mesh_shape = (num_devices, 1) | ||
device_ids = np.arange(num_devices) | ||
mesh = Mesh(device_ids, mesh_shape, ('x', 'y')) | ||
|
||
if 'batch' in FLAGS.sharding: | ||
train_loader = pl.MpDeviceLoader( | ||
train_loader, device, input_sharding=xs.ShardingSpec(mesh, (0, 1))) | ||
|
||
if 'fsdp' in FLAGS.sharding: | ||
train_loader = pl.MpDeviceLoader( | ||
train_loader, device, input_sharding=xs.ShardingSpec(mesh, (0, 1))) | ||
print('Sharding model weights') | ||
# Shard the weights according to their 0th dim | ||
xs.mark_sharding(model.layers[0].weight, mesh, (0, 1)) | ||
xs.mark_sharding(model.layers[2].weight, mesh, (0, 1)) | ||
|
||
if 'megatron-lm' in FLAGS.sharding: | ||
print('Sharding model weights') | ||
# Shard the first layer's weights row-wise | ||
xs.mark_sharding(model.layers[0].weight, mesh, (0, 1)) | ||
# Shard the second layer's weights column-wise | ||
xs.mark_sharding(model.layers[2].weight, mesh, (1, 0)) | ||
|
||
optimizer = optim.SGD(model.parameters(), lr=FLAGS.lr) | ||
|
||
loss_fn = nn.CrossEntropyLoss() | ||
|
||
def train_loop_fn(loader, epoch): | ||
model.train() | ||
for step, (data, target) in enumerate(loader): | ||
with xp.StepTrace('train_linear_model'): | ||
with xp.Trace('build_graph'): | ||
x = data.to(device) | ||
y = target.to(device) | ||
optimizer.zero_grad() | ||
output = model(x) | ||
loss = loss_fn(output, y) | ||
losses.append(loss.clone().detach()) | ||
loss.backward() | ||
optimizer.step() | ||
xm.mark_step() | ||
if step % FLAGS.log_steps == 0: | ||
print(f"Epoch {epoch} step {step} loss {loss}") | ||
|
||
losses = [] | ||
for epoch in range(FLAGS.num_epochs): | ||
train_loop_fn(train_loader, epoch) | ||
return losses, model | ||
|
||
|
||
def train_and_evaluate(): | ||
default_config = { | ||
'batch_size': 128, | ||
'num_epochs': 1, | ||
'lr': 0.1, | ||
'log_steps': 8, | ||
'opts': MODEL_OPTS.items() | ||
} | ||
|
||
global PROFILER_SERVER, FLAGS | ||
FLAGS = args_parse.parse_common_options(**default_config) | ||
if FLAGS.profile: | ||
PROFILER_SERVER = xp.start_server(FLAGS.profiler_port) | ||
xr.use_spmd(auto=FLAGS.auto_spmd) | ||
print('Start training loop...') | ||
losses, m = train() | ||
t = torch.randn(10, FLAGS.input_dim).to(xm.xla_device()) | ||
return [loss.cpu() for loss in losses], m(t).cpu() |