Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Local inference upload collection and upload records #862

Merged
merged 20 commits into from
Jan 29, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
134 changes: 120 additions & 14 deletions qdrant_client/async_qdrant_client.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
import warnings
from copy import deepcopy
from typing import Any, Awaitable, Callable, Iterable, Mapping, Optional, Sequence, Union
import numpy as np
from qdrant_client import grpc as grpc
from qdrant_client.async_client_base import AsyncQdrantBase
from qdrant_client.common.client_warnings import show_warning_once
Expand Down Expand Up @@ -95,6 +96,7 @@ def __init__(
Union[Callable[[], str], Callable[[], Awaitable[str]]]
] = None,
cloud_inference: bool = False,
local_inference_batch_size: Optional[int] = None,
check_compatibility: bool = True,
**kwargs: Any,
):
Expand Down Expand Up @@ -142,6 +144,7 @@ def __init__(
"Cloud inference is not supported for local Qdrant, consider using FastEmbed or switch to Qdrant Cloud"
)
self.cloud_inference = cloud_inference
self.local_inference_batch_size = local_inference_batch_size

async def close(self, grpc_grace: Optional[float] = None, **kwargs: Any) -> None:
"""Closes the connection to Qdrant
Expand Down Expand Up @@ -395,7 +398,11 @@ async def query_batch_points(
requests = self._resolve_query_batch_request(requests)
requires_inference = self._inference_inspector.inspect(requests)
if requires_inference and (not self.cloud_inference):
requests = [self._embed_models(request) for request in requests]
requests = list(
self._embed_models(
requests, is_query=True, batch_size=self.local_inference_batch_size
)
)
return await self._client.query_batch_points(
collection_name=collection_name,
requests=requests,
Expand Down Expand Up @@ -522,10 +529,35 @@ async def query_points(
query = self._resolve_query(query)
requires_inference = self._inference_inspector.inspect([query, prefetch])
if requires_inference and (not self.cloud_inference):
query = self._embed_models(query, is_query=True) if query is not None else None
prefetch = (
self._embed_models(prefetch, is_query=True) if prefetch is not None else None
query = (
next(
iter(
self._embed_models(
query, is_query=True, batch_size=self.local_inference_batch_size
)
)
)
if query is not None
else None
)
if isinstance(prefetch, list):
prefetch = list(
self._embed_models(
prefetch, is_query=True, batch_size=self.local_inference_batch_size
)
)
else:
prefetch = (
next(
iter(
self._embed_models(
prefetch, is_query=True, batch_size=self.local_inference_batch_size
)
)
)
if prefetch is not None
else None
)
return await self._client.query_points(
collection_name=collection_name,
query=query,
Expand Down Expand Up @@ -661,10 +693,31 @@ async def query_points_groups(
query = self._resolve_query(query)
requires_inference = self._inference_inspector.inspect([query, prefetch])
if requires_inference and (not self.cloud_inference):
query = self._embed_models(query, is_query=True) if query is not None else None
prefetch = (
self._embed_models(prefetch, is_query=True) if prefetch is not None else None
query = (
next(
iter(
self._embed_models(
query, is_query=True, batch_size=self.local_inference_batch_size
)
)
)
if query is not None
else None
)
if isinstance(prefetch, list):
prefetch = list(
self._embed_models(
prefetch, is_query=True, batch_size=self.local_inference_batch_size
)
)
elif prefetch is not None:
prefetch = next(
iter(
self._embed_models(
prefetch, is_query=True, batch_size=self.local_inference_batch_size
)
)
)
return await self._client.query_points_groups(
collection_name=collection_name,
query=query,
Expand Down Expand Up @@ -1506,10 +1559,20 @@ async def upsert(
)
requires_inference = self._inference_inspector.inspect(points)
if requires_inference and (not self.cloud_inference):
if isinstance(points, list):
points = [self._embed_models(point, is_query=False) for point in points]
if isinstance(points, types.Batch):
points = next(
iter(
self._embed_models(
points, is_query=False, batch_size=self.local_inference_batch_size
)
)
)
else:
points = self._embed_models(points, is_query=False)
points = list(
self._embed_models(
points, is_query=False, batch_size=self.local_inference_batch_size
)
)
return await self._client.upsert(
collection_name=collection_name,
points=points,
Expand Down Expand Up @@ -1560,7 +1623,11 @@ async def update_vectors(
assert len(kwargs) == 0, f"Unknown arguments: {list(kwargs.keys())}"
requires_inference = self._inference_inspector.inspect(points)
if requires_inference and (not self.cloud_inference):
points = [self._embed_models(point, is_query=False) for point in points]
points = list(
self._embed_models(
points, is_query=False, batch_size=self.local_inference_batch_size
)
)
return await self._client.update_vectors(
collection_name=collection_name,
points=points,
Expand Down Expand Up @@ -2000,9 +2067,11 @@ async def batch_update_points(
assert len(kwargs) == 0, f"Unknown arguments: {list(kwargs.keys())}"
requires_inference = self._inference_inspector.inspect(update_operations)
if requires_inference and (not self.cloud_inference):
update_operations = [
self._embed_models(op, is_query=False) for op in update_operations
]
update_operations = list(
self._embed_models(
update_operations, is_query=False, batch_size=self.local_inference_batch_size
)
)
return await self._client.batch_update_points(
collection_name=collection_name,
update_operations=update_operations,
Expand Down Expand Up @@ -2426,7 +2495,25 @@ def upload_points(
This parameter overwrites shard keys written in the records.

"""

def chain(*iterables: Iterable) -> Iterable:
for iterable in iterables:
yield from iterable

assert len(kwargs) == 0, f"Unknown arguments: {list(kwargs.keys())}"
if not self.cloud_inference:
iter_points = iter(points)
requires_inference = False
try:
point = next(iter_points)
requires_inference = self._inference_inspector.inspect(point)
points = chain(iter([point]), iter_points)
except (StopIteration, StopAsyncIteration):
points = []
if requires_inference:
points = self._embed_models_strict(
points, parallel=parallel, batch_size=self.local_inference_batch_size
)
return self._client.upload_points(
collection_name=collection_name,
points=points,
Expand Down Expand Up @@ -2478,7 +2565,26 @@ def upload_collection(
If multiple shard_keys are provided, the update will be written to each of them.
Only works for collections with `custom` sharding method.
"""

def chain(*iterables: Iterable) -> Iterable:
for iterable in iterables:
yield from iterable

assert len(kwargs) == 0, f"Unknown arguments: {list(kwargs.keys())}"
if not self.cloud_inference:
if not isinstance(vectors, dict) and (not isinstance(vectors, np.ndarray)):
requires_inference = False
try:
iter_vectors = iter(vectors)
vector = next(iter_vectors)
requires_inference = self._inference_inspector.inspect(vector)
vectors = chain(iter([vector]), iter_vectors)
except (StopIteration, StopAsyncIteration):
vectors = []
if requires_inference:
vectors = self._embed_models_strict(
vectors, parallel=parallel, batch_size=self.local_inference_batch_size
)
return self._client.upload_collection(
collection_name=collection_name,
vectors=vectors,
Expand Down
Loading