-
Notifications
You must be signed in to change notification settings - Fork 12
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
e333d3d
commit 4dd1d64
Showing
33 changed files
with
14,009 additions
and
10 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,101 @@ | ||
import numpy as np | ||
from sklearn.metrics import confusion_matrix | ||
|
||
class _StreamMetrics(object): | ||
def __init__(self): | ||
""" Overridden by subclasses """ | ||
raise NotImplementedError() | ||
|
||
def update(self, gt, pred): | ||
""" Overridden by subclasses """ | ||
raise NotImplementedError() | ||
|
||
def get_results(self): | ||
""" Overridden by subclasses """ | ||
raise NotImplementedError() | ||
|
||
def to_str(self, metrics): | ||
""" Overridden by subclasses """ | ||
raise NotImplementedError() | ||
|
||
def reset(self): | ||
""" Overridden by subclasses """ | ||
raise NotImplementedError() | ||
|
||
class StreamSegMetrics(_StreamMetrics): | ||
""" | ||
Stream Metrics for Semantic Segmentation Task | ||
""" | ||
def __init__(self, n_classes): | ||
self.n_classes = n_classes | ||
self.confusion_matrix = np.zeros((n_classes, n_classes)) | ||
|
||
def update(self, label_trues, label_preds): | ||
for lt, lp in zip(label_trues, label_preds): | ||
self.confusion_matrix += self._fast_hist( lt.flatten(), lp.flatten() ) | ||
|
||
@staticmethod | ||
def to_str(results): | ||
string = "\n" | ||
for k, v in results.items(): | ||
if k!="Class IoU": | ||
string += "%s: %f\n"%(k, v) | ||
|
||
#string+='Class IoU:\n' | ||
#for k, v in results['Class IoU'].items(): | ||
# string += "\tclass %d: %f\n"%(k, v) | ||
return string | ||
|
||
def _fast_hist(self, label_true, label_pred): | ||
mask = (label_true >= 0) & (label_true < self.n_classes) | ||
hist = np.bincount( | ||
self.n_classes * label_true[mask].astype(int) + label_pred[mask], | ||
minlength=self.n_classes ** 2, | ||
).reshape(self.n_classes, self.n_classes) | ||
return hist | ||
|
||
def get_results(self): | ||
"""Returns accuracy score evaluation result. | ||
- overall accuracy | ||
- mean accuracy | ||
- mean IU | ||
- fwavacc | ||
""" | ||
hist = self.confusion_matrix | ||
acc = np.diag(hist).sum() / hist.sum() | ||
acc_cls = np.diag(hist) / hist.sum(axis=1) | ||
acc_cls = np.nanmean(acc_cls) | ||
iu = np.diag(hist) / (hist.sum(axis=1) + hist.sum(axis=0) - np.diag(hist)) | ||
mean_iu = np.nanmean(iu) | ||
freq = hist.sum(axis=1) / hist.sum() | ||
fwavacc = (freq[freq > 0] * iu[freq > 0]).sum() | ||
cls_iu = dict(zip(range(self.n_classes), iu)) | ||
|
||
return { | ||
"Overall Acc": acc, | ||
"Mean Acc": acc_cls, | ||
"FreqW Acc": fwavacc, | ||
"Mean IoU": mean_iu, | ||
"Class IoU": cls_iu, | ||
} | ||
|
||
def reset(self): | ||
self.confusion_matrix = np.zeros((self.n_classes, self.n_classes)) | ||
|
||
class AverageMeter(object): | ||
"""Computes and stores the average and current value""" | ||
def __init__(self): | ||
self.reset() | ||
|
||
def reset(self): | ||
self.val = 0 | ||
self.avg = 0 | ||
self.sum = 0 | ||
self.count = 0 | ||
|
||
def update(self, val, n=1): | ||
self.val = val | ||
self.sum += val * n | ||
self.count += n | ||
self.avg = self.sum / self.count | ||
|
Oops, something went wrong.