Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added Kronecker product function in math_lib.f90 #148

Closed
wants to merge 2 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
193 changes: 193 additions & 0 deletions math_lib.f90
Original file line number Diff line number Diff line change
@@ -0,0 +1,193 @@
!> Here we put a set of basic mathematic operations
function det3(a)
!> calculate the determinant of a real valued rank-3 matrix
use para, only : dp
implicit none
real(dp) :: det3
real(dp), intent(in) :: a(3, 3)

det3= a(1,1)*(a(2,2)*a(3,3)-a(3,2)*a(2,3)) &
+a(2,1)*(a(3,2)*a(1,3)-a(1,2)*a(3,3)) &
+a(3,1)*(a(1,2)*a(2,3)-a(2,2)*a(1,3))

return
end function det3

!> Get the angle between two given vectors which are in cartesian coordinates
!> return in degree
function angle(R1, R2)
use para, only : dp, pi

implicit none
real(dp), intent(in) :: R1(3), R2(3)
real(dp) :: angle, adotb
real(dp), external :: norm

adotb=dot_product(R1, R2)
angle= acos(adotb/norm(R1)/norm(R2))*180d0/pi

return
end function angle

!> Get the length of a given 3-value vector
function norm(R1)
use para, only : dp

implicit none
real(dp), intent(in) :: R1(3)
real(dp) :: norm1
real(dp) :: norm

norm1= R1(1)*R1(1)+ R1(2)*R1(2)+ R1(3)*R1(3)
norm= sqrt(norm1)

return
end function norm

!> shift the atom's position to the home unit cell
!> shift pos_direct_pc to the home unit cell (-0.5, 0.5]
subroutine in_home_cell_regularization(pos)
use para, only : dp, eps3, pi

implicit none

real(dp), intent(inout) :: pos(3)

integer :: i
real(dp) :: irrational_shift(3)
irrational_shift= (/ pi/1000d0, pi/1000d0, 0d0 /)
pos= pos+ irrational_shift

pos= pos-floor(pos)

do i=1, 3
if (abs(pos(i)-1)<0.03d0) pos(i)= 1d0
if (abs(pos(i)-0.5)<0.03d0) pos(i)= 0.5d0
if (pos(i)>0.5000000d0) pos(i)= pos(i)-1d0
enddo
pos= pos- irrational_shift

return
end subroutine in_home_cell_regularization



!> the shortest difference betwerrn two vectors with respect to the lattice vectors
subroutine periodic_diff_1D(R2, R1, diff)
!> diff= mod(R2-R1, 1)
use para, only : dp

implicit none

real(dp), intent(in) :: R1, R2
real(dp), intent(out) :: diff

integer :: i

diff= R2-R1
diff= diff-floor(diff)

if (diff>0.5000000d0) diff= diff-1d0

return
end subroutine periodic_diff_1D

!> shift the atom's position to the home unit cell
!> shift pos_direct_pc to the home unit cell [-0.5, 0.5)
subroutine in_home_cell(R0)
use para, only : dp

implicit none

real(dp), intent(inout) :: R0(3)

integer :: i

R0= R0-int8(R0)

do i=1, 3
if (R0(i)>=0.5000000d0) R0(i)= R0(i)-1d0
enddo

R0= R0+ 0.5d0
R0= mod(R0, 1d0)

return
end subroutine in_home_cell



!> the shortest difference betwerrn two vectors with respect to the lattice vectors
subroutine periodic_diff(R2, R1, diff)
!> diff= mod(R2-R1, 1)
use para, only : dp

implicit none

real(dp), intent(in) :: R1(3), R2(3)
real(dp), intent(out) :: diff(3)

integer :: i

diff= R2-R1
diff= diff-floor(diff)

do i=1, 3
if (diff(i)>0.5000000d0) diff(i)= diff(i)-1d0
enddo

return
end subroutine periodic_diff

!> cross product of two 3-value vectors
!> R3=R1 x R2
subroutine cross_product(R1, R2, R3)
use para, only : dp
implicit none

real(dp), intent(in) :: R1(3), R2(3)
real(dp), intent(out) :: R3(3)

R3(1)= R1(2)*R2(3)- R1(3)*R2(2)
R3(2)= R1(3)*R2(1)- R1(1)*R2(3)
R3(3)= R1(1)*R2(2)- R1(2)*R2(1)

return
end subroutine cross_product


Module Kronecker

contains

! Takes in Matrices A(i,j),B(k,l), assumed 2D, returns Kronecker Product
! C(i*k,j*l)
function KronProd(A,B) result(C)

use para, only : Dp
IMPLICIT NONE

complex(Dp), dimension (:,:), intent(in) :: A, B
complex(Dp), dimension (:,:), allocatable :: C
!real, dimension (:,:), intent(in) :: A, B
!real, dimension (:,:), allocatable :: C
integer :: i = 0, j = 0, k = 0, l = 0
integer :: m = 0, n = 0, p = 0, q = 0


allocate(C(size(A,1)*size(B,1),size(A,2)*size(B,2)))
C = 0

do i = 1,size(A,1)
do j = 1,size(A,2)
n=(i-1)*size(B,1) + 1
m=n+size(B,1) - 1
p=(j-1)*size(B,2) + 1
q=p+size(B,2) - 1
C(n:m,p:q) = A(i,j)*B
enddo
enddo

end function KronProd
end module Kronecker

Loading