Easily manage your project dependencies with RSDI. This library provides a robust type-checking system.
Popular dependency injection libraries utilize reflect-metadata to retrieve argument types and use those types to carry out autowiring. Autowiring is an advantageous feature, but it necessitates the wrapping of all your components with decorators.
@injectable()
class Foo {
constructor(@inject("Database") private database?: Database) {}
}
// Notice how in order to allow the use of the empty constructor new Foo(),
// we need to make the parameters optional, e.g. database?: Database.
Why should component Foo be aware that it's injectable?
Your business logic relies on a particular framework, which isn't part of your domain model and is subject to change.
More thoughts in a dedicated article
- Simple but powerful
- Does not requires decorators
- Strict types resolution
RSDI
is most effective in complex applications. When the complexity of your application is high, it becomes necessary to
break up huge components into smaller ones to control the complexity. You have components that use other components that
use other components. You have application layers and a layer hierarchy. There is a need to transfer dependencies from
the upper layers to the lower ones.
RSDI
expects (but does not require) that you build all your dependencies into a dependency tree. Let's take a typical
web application as an example. Given that your application is quite large and has many layers:
- controllers (REST or graphql handlers)
- domain model handlers (your domain models, various managers, use-cases etc)
- DB repositories,
- Low level services
Every application, whether it's a web app or a command-line tool, starts at an entry point. This is where you should set up your dependency injection container. Once set up, the top-level parts of your app will automatically get the lower-level parts they need. For web servers, the dependency injection container will manage a pre-configured router, which will already include the necessary controllers.
Let's look at a basic web app that registers new users as an example. Keep in mind, a real-world app has many more parts and the logic is usually more complex. This is just a quick demo to show you the ropes.
const container = new DIContainer()
.add("a", () => "name1")
.add("bar", () => new Bar())
.add("foo", ({ a, bar}) => new Foo(a, bar));
const { foo } = container; // alternatively container.get("foo");
// sample web application components
export function UserController(
userRegistrator: UserRegistrator,
userRepository: UserRepository,
) {
return {
async create(req: Request, res: Response) {
const user = await userRegistrator.register(req.body);
res.send(user);
},
async list(req: Request) {
const users = await userRepository.findAll(req.body);
res.send(users);
},
};
}
export class UserRegistrator {
public constructor(public readonly userRepository: UserRepository) {}
public async register(userData: SignupData) {
// validate and send sign up email
return this.userRepository.saveNewUser(userData);
}
}
export function MyDbProviderUserRepository(db: DbConnection): UserRepository {
return {
async saveNewUser(userAccountData: SignupData): Promise<void> {
await this.db("insert").insert(userAccountData);
},
};
}
export function buildDbConnection(): DbConnection {
return connectToDb({
/* db credentials */
});
}
Now we need to configure the dependency injection container before use. Dependencies are declared and not really initiated
until the application really needs them. Your DI container initialization function - configureDI
will include:
import { DIContainer } from "rsdi";
export type AppDIContainer = ReturnType<typeof configureDI>;
export default function configureDI() {
return new DIContainer()
.add("dbConnection", buildDbConnection())
.add("userRepository", ({ dbConnection }) =>
MyDbProviderUserRepository(dbConnection),
)
.add("userRegistrator", ({ userRepository }) => new UserRegistrator(userRepository))
.add("userController", ({ userRepository, userRegistrator}) =>
UserController(userRepository, userRegistrator),
);
}
When a resolver is called for the first time, it's resolved once and the result is saved. From then on, the saved result is used. If you want to change a dependency, don't use the add method; use the update method instead. This way, you won't accidentally replace dependencies. If you need to mock a dependency for testing, that's when you'd want to override it.
Let's map our web application routes to configured controllers
// configure Express router
export default function configureRouter(
app: core.Express,
diContainer: AppDIContainer,
) {
const { usersController } = diContainer;
app
.route("/users")
.get(usersController.list)
.post(usersController.create);
}
Add configureDI
in the entry point of your application.
// express.ts
const app = express();
const diContainer = configureDI();
configureRouter(app, diContainer);
app.listen(8000);
The complete web application example can be found here
rsdi
offers strong type-safety due to its native TypeScript support. It leverages TypeScript's type system to provide
compile-time checks and ensure proper injection of dependencies.
As your application expands, you'll likely need to divide your DI container across multiple files for better
organization. You might have a main diContainer.ts
file for the core DI setup, and a separate controllers.ts
,
validators.ts
etc. This approach keeps your code clean and easy to manage.
// diContainer.ts
export const configureDI = async () => {
return (await buildDatabaseDependencies())
.extend(addDataAccessDependencies)
.extend(addValidators);
}
// addDataAccessDependencies.ts
export type DIWithPool = Awaited<ReturnType<typeof buildDatabaseDependencies>>;
export const addDataAccessDependencies = async () => {
const pool = await createDatabasePool();
const longRunningPool = await createLongRunningDatabasePool();
return new DIContainer()
.add("databasePool", () => pool)
.add("longRunningDatabasePool", () => longRunningPool);
};
// addValidators.ts
export type DIWithValidators = ReturnType<typeof addValidators>;
export const addValidators = (container: DIWithPool) => {
return container
.add('myValidatorA', ({ a, b, c }) => new MyValidatorA(a, b, c))
.add('myValidatorB', ({ a, b, c }) => new MyValidatorB(a, b, c));
};