Skip to content

rafstahelin/file-scripts

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

87 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

File Scripts Project

A collection of tools for managing machine learning workflows, file organization, and environment setup.

Quick Links

  • tools
    • Launch tools menu from any directory
  • source ~/.bashrc
    • Reload shell after installation

Available Tools

Environment

  • Setup (st)
    • Environment configuration and setup
    • Git synchronization
    • Command shortcuts installation
    • WANDB configuration (RunPod)

Model Management

  • Config Manager (cm)

    • Training configuration management
    • Template-based configuration
    • Version control integration
  • LoRA Mover (lm)

    • Process and organize LoRA models
    • Automated file organization
    • Version management

Cleanup

  • Remove Configs (rc)

    • Remove configuration files
    • Batch cleanup support
  • Dataset Cache (rd)

    • Clear dataset cache
    • Free up disk space
  • Dataset JSON (rj)

    • Clear dataset JSON files
    • Reset training metadata
  • Checkpoints (cp)

    • Delete .ipynb_checkpoints directories
    • Clean workspace structure
  • Delete Models (dm)

    • Remove model files and data
    • Selective cleanup options

Utilities

  • Download Configs (dc)

    • Sync configurations with Dropbox
    • Cloud backup integration
  • Debug Crops (db)

    • Debug image preparation issues
    • Visual feedback system

Installation

# Clone repository
git clone https://github.com/rafstahelin/file-scripts.git /workspace/file-scripts

# Run setup
cd /workspace/file-scripts
python tools.py  # Select 'setup' or 'st'
source ~/.bashrc

Project Structure

/workspace/file-scripts/
├── tools/          # Tool implementations
├── docs/          # Documentation
└── tools.py       # Main menu system

Environment Support

  • ✓ RunPod

    • Full support with cloud integrations
    • WANDB integration
    • Network volume support
  • ✓ Container

    • Standard functionality
    • Local development features
  • ~ WSL

    • Basic functionality
    • Future enhancements planned

Development

Tools follow a standardized pattern:

  • Python module in tools directory
  • Tool class with run() method
  • Rich console interface
  • Error handling and user feedback

Support

For issues and feature requests, please open an issue on the GitHub repository.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages