Version: 4.0.0 (Stable) Status: Production Ready
Custom PyTorch Docker template for RunPod optimized for machine learning workloads with integrated HuggingFace and Rclone support.
- Base: PyTorch 2.4.0, Python 3.11, CUDA 12.4.1
- Integrated Services:
- Jupyter Lab (Port 8888)
- SSH Server (Port 22)
- Nginx Proxy (Port 80)
- ML Integration:
- HuggingFace with token support
- Rclone/Dropbox synchronization
- Network volume optimization
# Pull the stable image
docker pull rafrafraf/rnpd-pytorch240:latest
# Run locally
docker run -p 8888:8888 -p 22:22 -p 80:80 \
-v /path/to/workspace:/workspace \
-e HF_TOKEN=your_token \
rafrafraf/rnpd-pytorch240:latest
# Access points
- Jupyter: http://localhost:8888 (password: 1234)
- SSH: ssh -p 22 root@localhost (password: 1234)
/workspace/
├── .cache/
│ └── huggingface/ # HF cache directory
├── .config/
│ └── rclone/ # Rclone configuration
├── SimpleTuner/ # ML workspace
│ ├── config/ # Training configurations
│ ├── datasets/ # Training data
│ └── output/ # Training results
└── StableSwarmUI/ # Model management
- Template:
rafrafraf/rnpd-pytorch240:latest
- Environment Variables:
- JUPYTER_PASSWORD: Custom password (default: 1234)
- HF_TOKEN: Your HuggingFace token
- SSH_PORT: 22 (fixed)
- JUPYTER_PORT: 8888 (fixed)
- Volume Configuration:
- Mount point: /workspace
- Network volume required for persistence
- Automatic token configuration
- Persistent cache directory
- Model and dataset management
- Token verification via
huggingface_hub.HfApi().whoami()
- Network volume configuration
- Dropbox synchronization support
- Automatic configuration loading
- Persistent settings
- Jupyter Lab with terminal support
- SSH access for remote development
- Nginx reverse proxy
- Automatic workspace setup
- Network volume optimization
- v4.0.0: Current stable
- Working HuggingFace integration
- Working Rclone/Dropbox support
- Network volume optimization
For custom development:
- Fork the repository
- Local testing:
docker build -t mytest:latest .
docker run -p 8888:8888 -v /path/to/workspace:/workspace mytest:latest
- Fork the repository
- Create your feature branch:
git checkout -b feature/my-new-feature
- Commit your changes:
git commit -am 'feat: Add some feature'
- Push to the branch:
git push origin feature/my-new-feature
- Submit a pull request
This project is licensed under the MIT License - see the LICENSE file for details.
For issues and feature requests, please use the GitHub issue tracker.