Skip to content

Commit

Permalink
full code release
Browse files Browse the repository at this point in the history
  • Loading branch information
raphajaner committed Oct 23, 2024
1 parent 7443251 commit e325b14
Show file tree
Hide file tree
Showing 218 changed files with 186,593 additions and 12 deletions.
22 changes: 10 additions & 12 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,18 +12,14 @@ This repository is the official implementation of the [paper](https://scholar.go
> [Manabu Tsukada](https://scholar.google.com/citations?user=GSfYxPIAAAAJ&hl=en),
> and [Marco Caccamo](https://scholar.google.com/citations?user=Jbo1MqwAAAAJ&hl=en&oi=ao).
The paper is under review for possible publication. If you find our work useful, please consider [citing](#reference) it.

**Note**: The <u>full code</u> will be made available <u>after publication</u>.
Presented at: 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

<p align="center">
<img src="docs/anim_1.gif" alt="Replicated real-world racetracks." width="200" />
<img src="docs/anim_2.gif" alt="Replicated real-world racetracks." width="200" />
<img src="docs/anim_2.gif" [main.py](../icra_2023/main.py)alt="Replicated real-world racetracks." width="200" />
<img src="docs/anim_3.gif" alt="Replicated real-world racetracks." width="200" />
</p>



## Table of contents
- [Background](#background)
- [Install](#install)
Expand Down Expand Up @@ -78,13 +74,13 @@ RaceMOP demonstrates superior handling over existing mapless planners while gene
```
## Usage
### Inference
You can start evaluation the provided agent by running the following command:
You can start evaluating the provided agent by running the following command:
```bash
python main.py
```
The use of your GPU can be avoided by running:
```bash
python main.py cuda=cpu
python main.py device=cpu
```
### Rendering
Rendering can be enabled by setting running:
Expand All @@ -93,7 +89,7 @@ python main.py render=True
```
Since this will launch windows for all 12 maps, we recommend selecting a specific map for evaluation:
```bash
python main.py render=True maps.maps_train=[Catalunya] maps.maps_test=[]
python main.py mode=inference render=True maps.maps_train=[Catalunya] maps.maps_test=[]
```

### Others
Expand All @@ -109,12 +105,14 @@ Most of the code is documented with *automatically* generated docstrings, please
If you find our work useful, please consider citing our paper:

```bibtex
@article{trumpp2024racemop,
@inproceedings{trumpp2024racemop,
title={RaceMOP: Mapless online path planning for multi-agent autonomous racing using residual policy learning},
author={Trumpp, Raphael and Javanmardi, Ehsan and Nakazato, Jin and Tsukada, Manabu and Caccamo, Marco},
journal={arXiv preprint arXiv:2403.07129},
year={2024}
booktitle={2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
year={2024},
organization={IEEE}
}
```

## License
Expand Down
Empty file added configs/__init__.py
Empty file.
40 changes: 40 additions & 0 deletions configs/config.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
# Standard Config
defaults:
- maps@maps
- rl@rl
- env@env
- planner: planner
- sim: sim
- _self_
# Run settings
mode: training # [ training, inference, baseline ]
benchmark: false
async_env: true
render: false
wandb: true
# Cuda settings
compile_torch: true
cuda_allow_tf32: true
torch_deterministic: false
device: cuda:0
# Evaluation settings
eval_freq: 50
eval_n_eps: 10
eval_n_parallel_envs: 2
sample_mode: false
safety_controller: false
# Inference loading model from wandb
wandb_model:
alias: latest
name: race_car-649yfd1r
# Others
exp_name: raceMOP
seed: 1
notes:
hydra:
job_logging:
formatters:
simple:
format: '%(message)s'


13 changes: 13 additions & 0 deletions configs/env.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
frame_cat:
use: true
n: 35
skip_slicing: 4 # n = ceil(n / (skip_slicing + 1)), e.g., ceil(5 / (1 + 1)) = 3, ceil(5 / (2 + 1)) = 2
wrapper:
normalize_obs: true
lidar_downsample_filter: true
clip_obs: [ -100, 100 ]
normalize_rew: true
clip_rew: [ -100, 100 ]
block_updates: true
block_after_n_updates: 0.2 # block after x * total_updates
reduce_scan_freq_by_2: false
15 changes: 15 additions & 0 deletions configs/maps.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
maps_train: [
Catalunya, Nuerburgring, MoscowRaceway, Hockenheim, Sepang, Budapest, Spielberg, Sakhir
]
maps_test: [
SaoPaulo, BrandsHatch, Melbourne, MexicoCity
]
map_path: './maps/'
map_ext: '.png'
wpt_delim: ';'
wpt_rowskip: 3
wpt_xind: 1
wpt_yind: 2
wpt_thind: 3
wpt_vind: 5
wpt_kappa: 4
8 changes: 8 additions & 0 deletions configs/planner/ego.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
defaults:
- params: apf # pure_pursuit / ftg_plus
- _self_
params:
do_plot: false
wpts_type: center # 'race' or 'center'


6 changes: 6 additions & 0 deletions configs/planner/opponents.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
defaults:
- params: pure_pursuit # pure_pursuit / ftg_plus
- _self_
params:
vgain: [ 0.8, 0.75, 0.7 ]
wpts_type: race
19 changes: 19 additions & 0 deletions configs/planner/params/apf.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
type: apf
vgain: [ 1.0 ]
tlad: 1.2
n_next_points: 150
skip_next_points: 5
vmax: None
wpts_type: center # 'race' or 'center'
# Specific params for each planner
rr: 8.0
k_att: 1000.0
k_rep: 50.0
max_iters: 20
step_size: 0.1
goal_threshold: 0.2
target_l: 10.0
lookahead_distance: 1.0
do_plot: false
#angle_incre: 0.00435
#angle_min: -2.35
17 changes: 17 additions & 0 deletions configs/planner/params/disparity.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
type: disparity # 'mpc' / 'pure_pursuit' / 'apf' / 'lattice'
vgain: [ 1.0 ] # 1.3, 0.6
tlad: 1.2 # 0.82461887897713965
n_next_points: 150
skip_next_points: 5
vmax: None
wpts_type: center # 'race' or 'center'
do_plot: false
# params
window_size: 10
safe_thres: 3.0 # 2.0
danger_thres: 3.0 # 1.5 #0.8
rb: 100
P: 0.6 # P gain for steering
max_gap_length: 600
min_gap_length: 20
safe_vgain: 1.2
19 changes: 19 additions & 0 deletions configs/planner/params/dummy.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
type: dummy
vgain: [ 1.0 ]
#tlad: 1.2
#n_next_points: 150
#skip_next_points: 5
#vmax: None
#wpts_type: center # 'race' or 'center'
## Specific params for each planner
#rr: 8.0
#k_att: 1000.0
#k_rep: 50.0
#max_iters: 20
#step_size: 0.1
#goal_threshold: 0.2
#target_l: 10.0
#lookahead_distance: 1.0
#do_plot: false
##angle_incre: 0.00435
##angle_min: -2.35
17 changes: 17 additions & 0 deletions configs/planner/params/ftg.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
type: ftg # 'mpc' / 'pure_pursuit' / 'apf' / 'lattice'
vgain: [ 1.0 ] # 1.3, 0.6
tlad: 1.2 # 0.82461887897713965
n_next_points: 150
skip_next_points: 5
vmax: None
wpts_type: center # 'race' or 'center'
do_plot: false
# params
window_size: 10
safe_thres: 3.0 # 2.0
danger_thres: 2.0 # 1.5 #0.8
rb: 100
P: 0.3 # P gain for steering
max_gap_length: 500
min_gap_length: 30
safe_vgain: 1.0
17 changes: 17 additions & 0 deletions configs/planner/params/ftg_plus.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
type: ftg_plus # 'mpc' / 'pure_pursuit' / 'apf' / 'lattice'
vgain: [ 1.0 ] # 1.3, 0.6
tlad: 1.2 # 0.82461887897713965
n_next_points: 150
skip_next_points: 5
vmax: None
wpts_type: center # 'race' or 'center'
do_plot: false
# params
window_size: 10
safe_thres: 2.0 # 2.0 # Must be meet for finding gaps
danger_thres: 0.5 # 1.5 #0.8 # Set to zero
rb: 100
P: 0.3 #6 #0.6 # P gain for steering
max_gap_length: 290
min_gap_length: 30
safe_vgain: 1.2
7 changes: 7 additions & 0 deletions configs/planner/params/lattice.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
type: lattice # 'mpc' / 'pure_pursuit' / 'apf' / 'lattice'
vgain: [ 1.0 ] # 1.3, 0.6
tlad: 1.2 # 0.82461887897713965 # 1.2 #
n_next_points: 150
skip_next_points: 5
vmax: None
wpts_type: race # 'race' or 'center'
7 changes: 7 additions & 0 deletions configs/planner/params/pure_pursuit.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
type: pure_pursuit
vgain: [ 1.0 ] # 1.3, 0.6
tlad: 0.82461887897713965 # 1.2
n_next_points: 150
skip_next_points: 5
vmax: None
wpts_type: center # 'race' or 'center'
7 changes: 7 additions & 0 deletions configs/planner/planner.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
defaults:
- ego@ego
- opponents@opponents
- _self_



54 changes: 54 additions & 0 deletions configs/rl.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
total_timesteps: 30e6 # total timesteps of the experiments
learning_rate: 1e-4 # the learning rate of the optimizer
warm_up_learning_rate: 3e-4
num_envs: 128 # the number of parallel game environments
num_steps: 4096 # the number of steps to run in each environment per policy rollout
anneal_lr: true # Toggle learning rate annealing for policy and value networks
anneal_lr_factor: 0.0 # eta_min = lr * factor
gamma: 0.99 # the discount factor gamma
gae_lambda: 0.95 # the lambda for the general advantage estimation
num_minibatches: 1024 # the number of mini-batches
update_epochs: 7 # the K epochs to update the policy
norm_adv: True # Toggles advantages normalization
clip_coef: 0.1 # the surrogate clipping coefficient
clip_vloss: true # Toggles whether to use a clipped loss for the value function, as per the paper.
ent_coef: 0.0 # coefficient of the entropy
vf_coef: 0.5 # 0.5 # coefficient of the value function
max_grad_norm: 1.0 # 0.5 # the maximum norm for the gradient clipping
target_kl: null # 0.01 the target KL divergence threshold
distribution: TruncatedNormal # ['TanhNormal', 'TruncatedNormal', 'Normal'] distribution to use for the actor's head -> TanhNormal is bounded [-1, 1]
combine_before_dist: true
init_logstd: [ -0.7, -0.7 ]
upscale_tanh: 5.0
tanh_loc: false
pre_tanh_loc: false
scale_action: [ 0.5, 0.5 ]
hidden_out_dim: 64
state_dim: 8
weight_decay: 0
rpo_alpha: 0.05
pretrain: false
critic_pretrain: 0.0
critic_safe_exploration: false
all_frames_history: true # use also the stacked frames for the feature vector and not only for the lidar
lstm:
use: false
hidden_size: 64
num_layers: 1
num_sub_minibatches: 8
obs_keys: [
aaa_scans,
prev_action,
linear_vels_x,
linear_vels_y,
slip_angle,
action_planner,
yaw_rate,
acc_x,
steering_angle
# 'ang_vels_z',
# 'acc_y',
# 'progress',
# 'safe_velocity',
# 'lookahead_points_relative',
]
14 changes: 14 additions & 0 deletions configs/sim/reward.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
reward:
step: 0.0
collision: -5.0
long_vel: 0.0
lat_vel: -0.0
scaling: 1.0
action_change: -0.002
yaw_change: -0.0
overtaking: 0.0
safe_distance_to_obstacles: -0.0
distance_threshold: 0.0
safe_velocity: 0.0
progress: 0.1
traveled_distance: 0.0
14 changes: 14 additions & 0 deletions configs/sim/sim.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
defaults:
- vehicle_params
- reward
render_mode: human_fast # [ human, human_fast, None ]
controller_dt: 0.02
dt: 0.01
start_pose_mode: random # [ first, sequential, random ]
n_agents: 3
start_positions:
n_clusters: 30
line_type: race # 'race' / 'center'
kappa_threshold: 10.0 #0.5
dynamic_reset: true
n_split: 2
21 changes: 21 additions & 0 deletions configs/sim/vehicle_params.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
vehicle_params:
mu: 0.8
C_Sf: 4.718
C_Sr: 5.4562
lf: 0.15875
lr: 0.17145
h: 0.074
m: 3.47
I: 0.04712
s_min: -0.4189
s_max: 0.4189
sv_min: -3.2
sv_max: 3.2
v_switch: 7.319
a_max: 7.51
v_min: 0.0 # -5.0
v_max: 8.0
width: 0.27
length: 0.51
fov_deg: 270
lidar_points: 1080
Loading

0 comments on commit e325b14

Please sign in to comment.