Skip to content

Commit

Permalink
Arc skews
Browse files Browse the repository at this point in the history
  • Loading branch information
regebro committed May 25, 2023
1 parent a351ed5 commit c34d5c9
Show file tree
Hide file tree
Showing 2 changed files with 237 additions and 25 deletions.
89 changes: 69 additions & 20 deletions src/svg/path/path.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,7 @@
from math import sqrt, cos, sin, acos, degrees, radians, log, pi
from math import sqrt, cos, sin, acos, atan, degrees, radians, log, pi, floor, ceil
from bisect import bisect
from abc import ABC, abstractmethod
from array import array
import math

try:
from collections.abc import MutableSequence
Expand Down Expand Up @@ -30,8 +29,8 @@ def _find_solutions_for_bezier(c2, c1, c0):
else:
det = c1**2 - 4 * c2 * c0
if det >= 0:
soln.append((-c1 + math.pow(det, 0.5)) / 2.0 / c2)
soln.append((-c1 - math.pow(det, 0.5)) / 2.0 / c2)
soln.append((-c1 + pow(det, 0.5)) / 2.0 / c2)
soln.append((-c1 - pow(det, 0.5)) / 2.0 / c2)
return [s for s in soln if 0.0 <= s and s <= 1.0]


Expand All @@ -42,34 +41,33 @@ def _find_solutions_for_arc(a, b, c, d):
# pi / 2 + pi * n = c + d * t
# --> n = d / pi * t - (1/2 - c/pi)
# --> t = (pi / 2 - c + pi * n) / d
n_ranges = [-0.5 + c / math.pi, d / math.pi - 0.5 + c / math.pi]
n_range_start = math.floor(min(n_ranges))
n_range_end = math.ceil(max(n_ranges))
n_ranges = [-0.5 + c / pi, d / pi - 0.5 + c / pi]
n_range_start = floor(min(n_ranges))
n_range_end = ceil(max(n_ranges))
t_list = [
(math.pi / 2 - c + math.pi * n) / d
for n in range(n_range_start, n_range_end + 1)
(pi / 2 - c + pi * n) / d for n in range(n_range_start, n_range_end + 1)
]
elif b == 0:
# when n \in Z
# pi * n = c + d * t
# --> n = d / pi * t + c / pi
# --> t = (- c + pi * n) / d
n_ranges = [c / math.pi, d / math.pi + c / math.pi]
n_range_start = math.floor(min(n_ranges))
n_range_end = math.ceil(max(n_ranges))
t_list = [(-c + math.pi * n) / d for n in range(n_range_start, n_range_end + 1)]
n_ranges = [c / pi, d / pi + c / pi]
n_range_start = floor(min(n_ranges))
n_range_end = ceil(max(n_ranges))
t_list = [(-c + pi * n) / d for n in range(n_range_start, n_range_end + 1)]
else:
# when n \in Z
# arct = tan^-1 (- b / a) and
# arct + pi * n = c + d * t
# --> n = (c - arct + d * t) / pi
# --> t = (arct - c + pi * n) / d
arct = math.atan(-b / a)
n_ranges = [(c - arct) / math.pi, d / math.pi + (c - arct) / math.pi]
n_range_start = math.floor(min(n_ranges))
n_range_end = math.ceil(max(n_ranges))
arct = atan(-b / a)
n_ranges = [(c - arct) / pi, d / pi + (c - arct) / pi]
n_range_start = floor(min(n_ranges))
n_range_end = ceil(max(n_ranges))
t_list = [
(arct - c + math.pi * n) / d for n in range(n_range_start, n_range_end + 1)
(arct - c + pi * n) / d for n in range(n_range_start, n_range_end + 1)
]

t_list = [t for t in t_list if 0.0 <= t and t <= 1.0]
Expand Down Expand Up @@ -739,10 +737,61 @@ def boundingbox(self):
return [x_min, y_min, x_max, y_max]

def transform(self, matrix):
# This arcane magic is adapted from
# https://math.stackexchange.com/questions/2068583/
#
# A=1/a^2
# B/2=−tanβ/a^2
# C=1/b^2+tan2β/a^2
# D=√((A+C)^2+B^2−4AC) (useful)
# λ1,2=(A+C∓D)/2
# new a = √(1/λ1)
# new b = √(1/λ2)
# new rotation = atan((A-C+D)/B)

new_rotation = self.rotation
rx = self.radius.real
ry = self.radius.imag

# Now look for skews:
skewx_angle = matrix[0][1]
skewy_angle = matrix[1][0]

if skewx_angle:
a = self.radius.real
b = self.radius.imag
tan_beta = -skewx_angle
A = 1 / (a**2)
B = -2 * tan_beta / a**2
C = (1 / b**2) + tan_beta**2 / a**2
D = sqrt((A + C) ** 2 + B**2 - 4 * A * C)
lambda1 = (A + C - D) / 2
lambda2 = (A + C + D) / 2
rx = sqrt(1 / lambda1)
ry = sqrt(1 / lambda2)
new_rotation += degrees(atan((A - C + D) / B))

if skewy_angle:
a = self.radius.imag
b = self.radius.real
tan_beta = skewy_angle
A = 1 / (a**2)
B = -2 * tan_beta / a**2
C = (1 / b**2) + tan_beta**2 / a**2
D = sqrt((A + C) ** 2 + B**2 - 4 * A * C)
lambda1 = (A + C - D) / 2
lambda2 = (A + C + D) / 2
rx *= sqrt(1 / lambda2)/self.radius.real
ry *= sqrt(1 / lambda1)/self.radius.imag
new_rotation += degrees(atan((A - C + D) / B))

rx *= matrix[0][0]
ry *= matrix[1][1]

return self.__class__(
_xform(self.start, matrix),
self.radius,
self.rotation,
complex(rx, ry),
new_rotation,
self.arc,
self.sweep,
_xform(self.end, matrix),
Expand Down
173 changes: 168 additions & 5 deletions tests/test_transforms.py
Original file line number Diff line number Diff line change
@@ -1,16 +1,179 @@
import unittest

from svg import path
from svg.transform import make_matrix
from svg import path, transform
from math import pi, tan, atan, sqrt
from cmath import polar, rect


class BaseTransformTests:
def _confirm_transform(self, original):
pass

def notest_confirm_lines(self):
for line in (
path.Line(0, 100 + 100j),
path.Line(0, 100),
path.Line(0, 100j),
path.Line(-100 + 50j, -250+200j),
):
self._confirm_transform(line)

def notest_confirm_quads(self):
for quad in (
path.QuadraticBezier(0, 100j, 100 + 100j),
path.QuadraticBezier(300+100j, 200+200j, 200+300j),
path.QuadraticBezier(6 + 2j, 5 - 1j, 6 + 2j),
):
self._confirm_transform(quad)

def notest_confirm_cubes(self):
for cube in(
path.CubicBezier(0, +100j, 100, 100 + 100j),
):
self._confirm_transform(cube)

def test_confirm_arcs(self):
for arc in (
path.Arc(0, 100 + 100j, 0, 0, 1, 100+100j),
#path.Arc(-200, 200 + 200j, 0, 0, 1, 200),
#path.Arc(-100, 100 + 50j, 0, 0, 1, 100),
#path.Arc(100, 100 + 50j, 0, 0, 1, -100),
):
self._confirm_transform(arc)


class TranslateTransformTests(BaseTransformTests, unittest.TestCase):
def _confirm_transform(self, original):
for x in (-100, -5, 0, 0.1, 1, 5, 10, 157):
for y in (-100, -5, 0, 0.1, 1, 5, 10, 157):
scale = transform.translate_matrix(x, y)
xformed = original.transform(scale)

for pos in range(0, 101):
opoint = original.point(pos*0.01)
xpoint = xformed.point(pos*0.01)
assert abs(xpoint.real - opoint.real - x) < 0.00001
assert abs(xpoint.imag - opoint.imag - y) < 0.00001


class ScaleTransformTests(BaseTransformTests, unittest.TestCase):
def _confirm_transform(self, original):
for x in (0.1, 0.5, 1, 1.1, 1.5, 2, 10):
for y in (0.1, 0.5, 1, 1.1, 1.5, 2, 10):
scale = transform.scale_matrix(x, y)
xformed = original.transform(scale)

for pos in range(0, 101):
opoint = original.point(pos*0.01)
xpoint = xformed.point(pos*0.01)
assert abs(xpoint.real - opoint.real * x) < 0.00001
assert abs(xpoint.imag - opoint.imag * y) < 0.00001


class SkewTransformTests(BaseTransformTests, unittest.TestCase):
def _confirm_transform(self, original):
for alpha in range(1, 6):
angle = (alpha * 15 * 2 * pi) / 360
skewx = transform.skewx_matrix(angle)
xformed_x = original.transform(skewx)
skewy = transform.skewy_matrix(angle)
xformed_y = original.transform(skewy)
skewboth = transform.make_matrix(ax=angle, ay=angle)
xformed_both = original.transform(skewboth)

from .utils import DebugTurtle
with DebugTurtle() as t:
t.draw_path(original)
t.draw_path(xformed_x, color="blue")
t.draw_path(xformed_y, color="green")
t.draw_path(xformed_both, color="red")
import pdb;pdb.set_trace()

for x in range(0, 101):
px = xformed_x.point(x * 0.01)
py = xformed_y.point(x * 0.01)
pb = xformed_both.point(x * 0.01)
o = original.point(x * 0.01)

assert abs(px.real - (tan(angle) * o.imag + o.real)) < 0.00001
assert abs(px.imag - o.imag) < 0.00001

assert abs(py.real - o.real) < 0.00001
assert abs(py.imag - (tan(angle) * o.real + o.imag)) < 0.00001

assert abs(pb.real - (tan(angle) * o.imag + o.real)) < 0.00001
assert abs(pb.imag - (tan(angle) * o.real + o.imag)) < 0.00001


class RotateTransformTests(BaseTransformTests, unittest.TestCase):
def _confirm_transform(self, original):
for alpha in range(1, 7):
angle = (alpha * 15 * 2 * pi) / 360
skewx = transform.rotate_matrix(angle)
xformed = original.transform(skewx)

for x in range(1, 101):
px = xformed.point(x * 0.01)
o = original.point(x * 0.01)

c, phi = polar(o)
px2 = rect(c, phi+angle)
assert abs(px - px2) < 1e-10


class TransformTests(unittest.TestCase):

def test_svg_path_transform(self):
line = path.Line(0, 100 + 100j)
xline = line.transform(make_matrix(sx=0.1, sy=0.2))
assert xline == path.Line(0, 10 + 20j)
linex = line.transform(transform.make_matrix(sx=0.1, sy=0.2))
assert linex == path.Line(0, 10 + 20j)

d = path.parser.parse_path("M 750,100 L 250,900 L 1250,900 z")
# Makes it 10% as big in x and 20% as big in y
td = d.transform(make_matrix(sx=0.1, sy=0.2))
td = d.transform(transform.make_matrix(sx=0.1, sy=0.2))
assert td.d() == "M 75,20 L 25,180 L 125,180 z"

d = path.parser.parse_path(
"M 10, 30 A 20, 20 0, 0, 1 50, 30 A 20,20 0, 0, 1 90, 30 Q 90, 60 50, 90 Q 10, 60 10, 30 z"
)
# Makes it 10% as big in x and 20% as big in y
m = (
transform.rotate_matrix((-10 * 2 * pi) / 360, 50, 100)
@ transform.translate_matrix(-36, 45.5)
@ transform.skewx_matrix((40 * 2 * pi) / 360)
@ transform.scale_matrix(1, 0.5)
)
td = d.transform(m)
# assert (
# td.d()
# == "M 149.32,82.6809 A 20,20 0 0,1 115.757,104.442 A 20,20 0 0,1 82.1939,126.203 "
# "Q 88.0949,104.5 127.559,61.0359 Q 155.221,60.978 149.32,82.6809 z"
# )

import turtle
t = turtle.Turtle()
t.penup()
arc = path.parser.parse_path(
"M 10, 30 A 20, 20 0, 0, 1 50, 30 A 20,20 0, 0, 1 90, 30 Q 90, 60 50, 90 Q 10, 60 10, 30 z"
)

arc = arc.transform(transform.scale_matrix(3) @ transform.translate_matrix(-50, -50))
for m in (
transform.skewx_matrix((40*2*pi)/360),
transform.scale_matrix(1, 0.5),
transform.translate_matrix(-36, 45.5),
#transform.rotate_matrix((-10*2*pi)/360),
#transform.scale_matrix(1, 0.5)
):
p = arc.point(0)
t.goto(p.real, -p.imag)
t.dot(3, 'black')
t.pendown()
for x in range(1, 101):
p = arc.point(x * 0.01)
t.goto(p.real, -p.imag)
t.penup()
t.dot(3, 'black')
arc = arc.transform(m)

import pdb;pdb.set_trace()

0 comments on commit c34d5c9

Please sign in to comment.