Skip to content

Perception and AI components for autonomous mobile robotics.

License

Notifications You must be signed in to change notification settings

richardbgreene/redtail

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

68 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

NVIDIA Redtail project

Autonomous visual navigation components for drones and ground vehicles using deep learning. Refer to wiki for more information on how to get started.

This project contains deep neural networks, computer vision and control code, hardware instructions and other artifacts that allow users to build a drone or a ground vehicle which can autonomously navigate through highly unstructured environments like forest trails, sidewalks, etc. Our TrailNet DNN for visual navigation is running on NVIDIA's Jetson embedded platform. Our arXiv paper describes TrailNet and other runtime modules in detail.

The project's deep neural networks (DNNs) can be trained from scratch using publicly available data. A few pre-trained DNNs are also available as a part of this project. In case you want to train TrailNet DNN from scratch, follow the steps on this page.

The project also contains Stereo DNN models and runtime which allow to estimate depth from stereo camera on NVIDIA platforms.

IROS 2018: we presented our work at IROS 2018 conference as a part of Vision-based Drones: What's Next? workshop.

CVPR 2018: we presented our work at CVPR 2018 conference as a part of Workshop on Autonomous Driving.

References and Demos

News

  • 2018-10-10: Stereo DNN ROS node and fixes.

    • Added Stereo DNN ROS node and visualizer node.
    • Fixed issue with nvidia-docker v2.
  • 2018-09-19: Updates to Stereo DNN.

    • Moved to TensorRT 4.0
    • Enabled FP16 support in ResNet18 2D model, resulting in 2x performance increase (20fps on Jetson TX2).
    • Enabled TensorRT serialization in ResNet18 2D model to reduce model loading time from minutes to less than a second.
    • Better logging and profiler support.
  • 2018-06-04: CVPR 2018 workshop. Fast version of Stereo DNN.

  • GTC 2018: Here is our Stereo DNN session page at GTC18 and the recorded video presentation

  • 2018-03-22: redtail 2.0.

    • Added Stereo DNN models and inference library (TensorFlow/TensorRT). For more details, see the README.
    • Migrated to JetPack 3.2. This change brings latest components such as CUDA 9.0, cuDNN 7.0, TensorRT 3.0, OpenCV 3.3 and others to Jetson platform. Note that this is a breaking change.
    • Added support for INT8 inference. This enables fast inference on devices that have hardware implementation of INT8 instructions. More details are on our wiki.
  • 2018-02-15: added support for the TBS Discovery platform.

    • Step by step instructions on how to assemble the TBS Discovery drone.
    • Instructions on how to attach and use a ZED stereo camera.
    • Detailed instructions on how to calibrate, test and fly the drone.
  • 2017-10-12: added full simulation Docker image, experimental support for APM Rover and support for MAVROS v0.21+.

    • Redtail simulation Docker image contains all the components required to run full Redtail simulation in Docker. Refer to wiki for more information.
    • Experimental support for APM Rover. Refer to wiki for more information.
    • Several other changes including support for MAVROS v0.21+, updated Jetson install script and few bug fixes.
  • 2017-09-07: NVIDIA Redtail project is released as an open source project.

    Redtail's AI modules allow building autonomous drones and mobile robots based on Deep Learning and NVIDIA Jetson TX1 and TX2 embedded systems. Source code, pre-trained models as well as detailed build and test instructions are released on GitHub.

  • 2017-07-26: migrated code and scripts to JetPack 3.1 with TensorRT 2.1.

    TensorRT 2.1 provides significant improvements in DNN inference performance as well as new features and bug fixes. This is a breaking change which requires re-flashing Jetson with JetPack 3.1.

About

Perception and AI components for autonomous mobile robotics.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • C++ 73.1%
  • Python 15.5%
  • C 3.6%
  • CMake 3.1%
  • Shell 2.4%
  • Cuda 2.0%
  • Dockerfile 0.3%