Package ora implements an Oracle database driver for the Go programming language.
An Oracle database may be accessed through the database/sql package or through the ora package directly. database/sql offers connection pooling, thread safety, a consistent API to multiple database technologies and a common set of Go types. The ora package offers additional features including pointers, slices, nullable types, numerics of various sizes, Oracle-specific types, Go return type configuration, and Oracle abstractions such as environment, server and session.
The ora package is written with the Oracle Call Interface (OCI) C-language libraries provided by Oracle. The OCI libraries are a standard for client application communication and driver communication with Oracle databases.
The ora package has been verified to work with
- Oracle Enterprise 12c (12.1.0.1.0), Windows 8.1 and AMD64.
- Oracle Standard 11g (11.2.0.4.0), Linux x86_64 (RHEL6)
- Installation
- Data Types
- SQL Placeholder Syntax
- Working With The Sql Package
- Working With The Oracle Package Directly
- Logging
- Test Database Setup
- Limitations
- License
- API Reference
- Examples
Minimum requirements are Go 1.3 with CGO enabled, a GCC C compiler, and Oracle 11g (11.2.0.4.0) or Oracle Instant Client (11.2.0.4.0).
Install Oracle or Oracle Instant Client.
Set the CGO_CFLAGS and CGO_LDFLAGS environment variables to locate the OCI headers and library. For example:
// example OS environment variables for Oracle 12c on Windows
CGO_CFLAGS=-Ic:/oracle/home/OCI/include/
CGO_LDFLAGS=c:/oracle/home/BIN/oci.dll
// example OS environment variables for Linux with InstantClient 12.1
CGO_CFLAGS=-I/usr/lib/oracle/12.1/client64/lib
CGO_LDFLAGS=-L/usr/lib/oracle/12.1/client64/lib -lclntsh
// maybe you'll need to set LD_LIBRARY_FLAGS or a file under /etc/ld.so.conf.d/ with /usr/lib/oracle/12.1/client64/lib
CGO_CFLAGS identifies the location of the OCI header file. CGO_LDFLAGS identifies the location of the OCI library. These locations will vary based on whether an Oracle database is locally installed or whether the Oracle instant client libraries are locally installed.
The ora package has no external Go dependencies and is available on GitHub and gopkg.in:
go get gopkg.in/rana/ora.v3
The ora package supports all built-in Oracle data types. The supported Oracle built-in data types are NUMBER, BINARY_DOUBLE, BINARY_FLOAT, FLOAT, DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME ZONE, INTERVAL YEAR TO MONTH, INTERVAL DAY TO SECOND, CHAR, NCHAR, VARCHAR, VARCHAR2, NVARCHAR2, LONG, CLOB, NCLOB, BLOB, LONG RAW, RAW, ROWID and BFILE. SYS_REFCURSOR is also supported.
Oracle does not provide a built-in boolean type. Oracle provides a single-byte
character type. A common practice is to define two single-byte characters which
represent true
and false
. The ora package adopts this approach. The oracle
package associates a Go bool
value to a Go rune and sends and receives the
rune to a CHAR(1 BYTE) column or CHAR(1 CHAR) column.
The default false
rune is zero 0
. The default true
rune is one 1
. The bool
rune
association may be configured or disabled when directly using the ora package
but not with the database/sql package.
Within a SQL string a placeholder may be specified to indicate where a Go variable
is placed. The SQL placeholder is an Oracle identifier, from 1 to 30
characters, prefixed with a colon :
. For example:
// example Oracle placeholder uses a colon
INSERT INTO T1 (C1) VALUES (:C1)
Placeholders within a SQL statement are bound by position. The actual name is not
used by the ora package driver e.g., placeholder names :c1
, :1
, or :xyz
are
treated equally.
You may access an Oracle database through the database/sql package. The database/sql package offers a consistent API across different databases, connection pooling, thread safety and a set of common Go types. database/sql makes working with Oracle straight-forward.
The ora package implements interfaces in the database/sql/driver package enabling database/sql to communicate with an Oracle database. Using database/sql ensures you never have to call the ora package directly.
When using database/sql, the mapping between Go types and Oracle types may be changed slightly. The database/sql package has strict expectations on Go return types. The Go-to-Oracle type mapping for database/sql is:
Go type Oracle type
int64 NUMBER°, BINARY_DOUBLE, BINARY_FLOAT, FLOAT
float64 NUMBERÂą, BINARY_DOUBLE, BINARY_FLOAT, FLOAT
time.Time TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME ZONE, DATE
string CHAR², NCHAR, VARCHAR, VARCHAR2, NVARCHAR2, LONG, CLOB, NCLOB
bool CHAR(1 BYTE)Âł, CHAR(1 CHAR)Âł
[]byte BLOB, LONG RAW, RAW
° A select-list column defined as an Oracle NUMBER with zero scale e.g.,
NUMBER(10,0) is returned as an int64. Either int64 or float64 may be inserted
into a NUMBER column with zero scale. float64 insertion will have its fractional
part truncated.
Âą A select-list column defined as an Oracle NUMBER with a scale greater than
zero e.g., NUMBER(10,4) is returned as a float64. Either int64 or float64 may
be inserted into a NUMBER column with a scale greater than zero.
² A select-list column defined as an Oracle CHAR with a length greater than 1
e.g., CHAR(2 BYTE) or CHAR(2 CHAR) is returned as a string. A Go string of any
length up to the column max length may be inserted into the CHAR column.
Âł The Go bool value false is mapped to the zero rune '0'. The Go bool value
true is mapped to the one rune '1'.
You may specify an optional *DrvCfg to ora.SetDrvCfg to configure various configuration options including statement configuration and Rset configuration.
func init() {
drvCfg := ora.NewDrvCfg()
drvCfg.Env.StmtCfg.FalseRune = 'N'
drvCfg.Env.StmtCfg.TrueRune = 'Y'
drvCfg.Env.StmtCfg.Rset.TrueRune = 'Y'
ora.SetDrvCfg(drvCfg)
}
When configuring the driver for use with database/sql, keep in mind that database/sql has strict Go type-to-Oracle type mapping expectations.
The ora package allows programming with pointers, slices, nullable types, numerics of various sizes, Oracle-specific types, Go return type configuration, and Oracle abstractions such as environment, server and session. When working with the ora package directly, the API is slightly different than database/sql.
When using the ora package directly, the mapping between Go types and Oracle types may be changed. The Go-to-Oracle type mapping for the ora package is:
Go type Oracle type
int64, int32, int16, int8 NUMBER°, BINARY_DOUBLE, BINARY_FLOAT, FLOAT
uint64, uint32, uint16, uint8
Int64, Int32, Int16, Int8
Uint64, Uint32, Uint16, Uint8
*int64, *int32, *int16, *int8
*uint64, *uint32, *uint16, *uint8
[]int64, []int32, []int16, []int8
[]uint64, []uint32, []uint16, []uint8
[]Int64, []Int32, []Int16, []Int8
[]Uint64, []Uint32, []Uint16, []Uint8
float64, float32 NUMBERÂą, BINARY_DOUBLE, BINARY_FLOAT, FLOAT
Float64, Float32
*float64, *float32
[]float64, []float32
[]Float64, []Float32
time.Time TIMESTAMP, TIMESTAMP WITH TIME ZONE,
Time TIMESTAMP WITH LOCAL TIME ZONE, DATE
*time.Time
[]time.Time
[]Time
string CHAR², NCHAR, VARCHAR, VARCHAR2,
String NVARCHAR2, LONG, CLOB, NCLOB, ROWID
*string
[]string
[]String
bool CHAR(1 BYTE)Âł, CHAR(1 CHAR)Âł
Bool
*bool
[]bool
[]Bool
[]byte, [][]byte BLOB
Lob, []Lob, *Lob BLOB, CLOB
Raw, []Raw RAW, LONG RAW
IntervalYM INTERVAL MONTH TO YEAR
[]IntervalYM
IntervalDS INTERVAL DAY TO SECOND
[]IntervalDS
Bfile BFILE
° A select-list column defined as an Oracle NUMBER with zero scale e.g.,
NUMBER(10,0) is returned as an int64 by default. Integer and floating point
numerics may be inserted into a NUMBER column with zero scale. Inserting a
floating point numeric will have its fractional part truncated.
Âą A select-list column defined as an Oracle NUMBER with a scale greater than
zero e.g., NUMBER(10,4) is returned as a float64 by default. Integer and
floating point numerics may be inserted into a NUMBER column with a scale
greater than zero.
² A select-list column defined as an Oracle CHAR with a length greater than 1
e.g., CHAR(2 BYTE) or CHAR(2 CHAR) is returned as a string. A Go string of any
length up to the column max length may be inserted into the CHAR column.
Âł The Go bool value false is mapped to the zero rune '0'. The Go bool value
true is mapped to the one rune '1'.
An example of using the ora package directly:
package main
import (
"fmt"
"gopkg.in/rana/ora.v3"
)
func main() {
// example usage of the ora package driver
// connect to a server and open a session
env, err := ora.OpenEnv(nil)
defer env.Close()
if err != nil {
panic(err)
}
srvCfg := ora.NewSrvCfg()
srvCfg.Dblink = "orcl"
srv, err := env.OpenSrv(srvCfg)
defer srv.Close()
if err != nil {
panic(err)
}
sesCfg := ora.NewSesCfg()
sesCfg.Username = "test"
sesCfg.Password = "test"
ses, err := srv.OpenSes(sesCfg)
defer ses.Close()
if err != nil {
panic(err)
}
// create table
tableName := "t1"
stmtTbl, err := ses.Prep(fmt.Sprintf("CREATE TABLE %v "+
"(C1 NUMBER(19,0) GENERATED ALWAYS AS IDENTITY "+
"(START WITH 1 INCREMENT BY 1), C2 VARCHAR2(48 CHAR))", tableName))
defer stmtTbl.Close()
if err != nil {
panic(err)
}
rowsAffected, err := stmtTbl.Exe()
if err != nil {
panic(err)
}
fmt.Println(rowsAffected)
// begin first transaction
tx1, err := ses.StartTx()
if err != nil {
panic(err)
}
// insert record
var id uint64
str := "Go is expressive, concise, clean, and efficient."
stmtIns, err := ses.Prep(fmt.Sprintf(
"INSERT INTO %v (C2) VALUES (:C2) RETURNING C1 INTO :C1", tableName))
defer stmtIns.Close()
rowsAffected, err = stmtIns.Exe(str, &id)
if err != nil {
panic(err)
}
fmt.Println(rowsAffected)
// insert nullable String slice
a := make([]ora.String, 4)
a[0] = ora.String{Value: "Its concurrency mechanisms make it easy to"}
a[1] = ora.String{IsNull: true}
a[2] = ora.String{Value: "It's a fast, statically typed, compiled"}
a[3] = ora.String{Value: "One of Go's key design goals is code"}
stmtSliceIns, err := ses.Prep(fmt.Sprintf(
"INSERT INTO %v (C2) VALUES (:C2)", tableName))
defer stmtSliceIns.Close()
if err != nil {
panic(err)
}
rowsAffected, err = stmtSliceIns.Exe(a)
if err != nil {
panic(err)
}
fmt.Println(rowsAffected)
// fetch records
stmtQry, err := ses.Prep(fmt.Sprintf(
"SELECT C1, C2 FROM %v", tableName))
defer stmtQry.Close()
if err != nil {
panic(err)
}
rset, err := stmtQry.Qry()
if err != nil {
panic(err)
}
for rset.Next() {
fmt.Println(rset.Row[0], rset.Row[1])
}
if rset.Err != nil {
panic(rset.Err)
}
// commit first transaction
err = tx1.Commit()
if err != nil {
panic(err)
}
// begin second transaction
tx2, err := ses.StartTx()
if err != nil {
panic(err)
}
// insert null String
nullableStr := ora.String{IsNull: true}
stmtTrans, err := ses.Prep(fmt.Sprintf(
"INSERT INTO %v (C2) VALUES (:C2)", tableName))
defer stmtTrans.Close()
if err != nil {
panic(err)
}
rowsAffected, err = stmtTrans.Exe(nullableStr)
if err != nil {
panic(err)
}
fmt.Println(rowsAffected)
// rollback second transaction
err = tx2.Rollback()
if err != nil {
panic(err)
}
// fetch and specify return type
stmtCount, err := ses.Prep(fmt.Sprintf(
"SELECT COUNT(C1) FROM %v WHERE C2 IS NULL", tableName), ora.U8)
defer stmtCount.Close()
if err != nil {
panic(err)
}
rset, err = stmtCount.Qry()
if err != nil {
panic(err)
}
row := rset.NextRow()
if row != nil {
fmt.Println(row[0])
}
if rset.Err != nil {
panic(rset.Err)
}
// create stored procedure with sys_refcursor
stmtProcCreate, err := ses.Prep(fmt.Sprintf(
"CREATE OR REPLACE PROCEDURE PROC1(P1 OUT SYS_REFCURSOR) AS BEGIN "+
"OPEN P1 FOR SELECT C1, C2 FROM %v WHERE C1 > 2 ORDER BY C1; "+
"END PROC1;",
tableName))
defer stmtProcCreate.Close()
rowsAffected, err = stmtProcCreate.Exe()
if err != nil {
panic(err)
}
// call stored procedure
// pass *Rset to Exe to receive the results of a sys_refcursor
stmtProcCall, err := ses.Prep("CALL PROC1(:1)")
defer stmtProcCall.Close()
if err != nil {
panic(err)
}
procRset := &ora.Rset{}
rowsAffected, err = stmtProcCall.Exe(procRset)
if err != nil {
panic(err)
}
if procRset.IsOpen() {
for procRset.Next() {
fmt.Println(procRset.Row[0], procRset.Row[1])
}
if procRset.Err != nil {
panic(procRset.Err)
}
fmt.Println(procRset.Len())
}
// Output:
// 0
// 1
// 4
// 1 Go is expressive, concise, clean, and efficient.
// 2 Its concurrency mechanisms make it easy to
// 3
// 4 It's a fast, statically typed, compiled
// 5 One of Go's key design goals is code
// 1
// 1
// 3
// 4 It's a fast, statically typed, compiled
// 5 One of Go's key design goals is code
// 3
}
Pointers may be used to capture out-bound values from a SQL statement such as an insert or stored procedure call. For example, a numeric pointer captures an identity value:
// given:
// CREATE TABLE T1 (
// C1 NUMBER(19,0) GENERATED ALWAYS AS IDENTITY (START WITH 1 INCREMENT BY 1),
// C2 VARCHAR2(48 CHAR))
var id int64
stmt, err = ses.Prep("INSERT INTO T1 (C2) VALUES ('GO') RETURNING C1 INTO :C1")
stmt.Exe(&id)
A string
pointer captures an out parameter from a stored procedure:
// given:
// CREATE OR REPLACE PROCEDURE PROC1 (P1 OUT VARCHAR2) AS BEGIN P1 := 'GO'; END PROC1;
var str string
stmt, err = ses.Prep("CALL PROC1(:1)")
stmt.Exe(&str)
Slices may be used to insert multiple records with a single insert statement:
// insert one million rows with single insert statement
// given: CREATE TABLE T1 (C1 NUMBER)
values := make([]int64, 1000000)
for n, _ := range values {
values[n] = int64(n)
}
rowsAffected, err := ses.PrepAndExe("INSERT INTO T1 (C1) VALUES (:C1)", values)
The ora package provides nullable Go types to support DML operations such as
insert and select. The nullable Go types provided by the ora package are Int64
,
Int32
, Int16
, Int8
, Uint64
, Uint32
, Uint16
, Uint8
, Float64
, Float32
, Time
,
IntervalYM
, IntervalDS
, String
, Bool
, Bytes
and Bfile
. For example, you may insert
nullable strings and select nullable strings:
// insert String slice
// given: CREATE TABLE T1 (C1 VARCHAR2(48 CHAR))
a := make([]ora.String, 5)
a[0] = ora.String{Value: "Go is expressive, concise, clean, and efficient."}
a[1] = ora.String{Value: "Its concurrency mechanisms make it easy to"}
a[2] = ora.String{IsNull: true}
a[3] = ora.String{Value: "It's a fast, statically typed, compiled"}
a[4] = ora.String{Value: "One of Go's key design goals is code"}
stmt, err = ses.Prep("INSERT INTO T1 (C1) VALUES (:C1)")
stmt.Exe(a)
// Specify OraS to Prep method to return ora.String values
// fetch records
stmt, err = ses.Prep("SELECT C1 FROM T1", OraS)
rst, err := stmt.Qry()
for rst.Next() {
fmt.Println(rst.Row[0])
}
The Stmt.Prep
method is variadic accepting zero or more GoColumnType
which define a Go return type for a select-list column. For example, a Prep
call can be configured to return an int64
and a nullable Int64
from the same
column:
// given: create table t1 (c1 number)
stmt, err = ses.Prep("SELECT C1, C1 FROM T1", ora.I64, ora.OraI64)
rst, err := stmt.Qry()
for rst.Next() {
fmt.Println(rst.Row[0], rst.Row[1])
}
Go numerics of various sizes are supported in DML operations. The ora package
supports int64
, int32
, int16
, int8
, uint64
, uint32
, uint16
, uint8
, float64
and
float32
. For example, you may insert a uint16
and select numerics of various sizes:
// insert uint16
// given: create table t1 (c1 number)
value := uint16(9)
stmt, err = ses.Prep("INSERT INTO T1 (C1) VALUES (:C1)")
stmt.Exe(value)
// select numerics of various sizes from the same column
stmt, err = ses.Prep(
"SELECT C1, C1, C1, C1, C1, C1, C1, C1, C1, C1, FROM T1",
ora.I64, ora.I32, ora.I16, ora.I8, ora.U64, ora.U32, ora.U16, ora.U8,
ora.F64, ora.F32)
rst, err := stmt.Qry()
row := rst.NextRow()
If a non-nullable type is defined for a nullable column returning null, the Go type's zero value is returned.
GoColumnTypes defined by the ora package are:
Go type GoColumnType
int64 I64
int32 I32
int16 I16
int8 I8
uint64 U64
uint32 U32
uint16 U16
uint8 U8
float64 F64
Int64 OraI64
Int32 OraI32
Int16 OraI16
Int8 OraI8
Uint64 OraU64
Uint32 OraU32
Uint16 OraU16
Uint8 OraU8
Float64 OraF64
Float32 OraF32
time.Time T
Time OraT
string S
String OraS
bool B
Bool OraB
[]byte Bin
Raw Bin
Lob° Bin or S
defaultÂą D
° Lob will return binary data if the Oracle column is a BLOB; otherwise, Lob
will return a string if the Oracle column is a CLOB.
Âą D represents a default mapping between a select-list column and a Go type.
The default mapping is defined in RsetCfg.
When Stmt.Prep
doesn't receive a GoColumnType
, or receives an incorrect GoColumnType
,
the default value defined in RsetCfg
is used.
EnvCfg
, SrvCfg
, SesCfg
, StmtCfg
and RsetCfg
are the main configuration structs.
EnvCfg
configures aspects of an Env
. SrvCfg
configures aspects of a Srv
. SesCfg
configures aspects of a Ses
. StmtCfg
configures aspects of a Stmt
. RsetCfg
configures aspects of Rset
. StmtCfg
and RsetCfg
have the most options to
configure. RsetCfg
defines the default mapping between an Oracle select-list
column and a Go type. StmtCfg
may be set in an EnvCfg
, SrvCfg
, SesCfg
and Stmt
.
RsetCfg
may be set in a StmtCfg
.
EnvCfg.StmtCfg
, SrvCfg.StmtCfg
, SesCfg.StmtCfg
may optionally be specified to
configure a statement. If StmtCfg
isn't specified default values are applied.
EnvCfg.StmtCfg
, SrvCfg.StmtCfg
, SesCfg.StmtCfg
cascade to new descendent structs.
When ora.OpenEnv()
is called a specified EnvCfg
is used or a default EnvCfg
is
created. Creating a Srv
with env.OpenSrv()
will use SrvCfg.StmtCfg
if
it is specified; otherwise, EnvCfg.StmtCfg
is copied by value to SrvCfg.StmtCfg
.
Creating a Ses
with srv.OpenSes()
will use SesCfg.StmtCfg
if it is specified;
otherwise, SrvCfg.StmtCfg
is copied by value to SesCfg.StmtCfg
. Creating a Stmt
with ses.Prep()
will use SesCfg.StmtCfg
if it is specified; otherwise, a new
StmtCfg
with default values is set on the Stmt
. Call Stmt.Cfg()
to change a Stmt
's
configuration.
An Env
may contain multiple Srv
. A Srv
may contain multiple Ses
. A Ses
may
contain multiple Stmt
. A Stmt
may contain multiple Rset
.
// StmtCfg cascades to descendent structs
// EnvCfg -> SrvCfg -> SesCfg -> StmtCfg -> RsetCfg
Setting a RsetCfg
on a StmtCfg
does not cascade through descendent structs. Configuration of Stmt.Cfg
takes effect prior to calls to Stmt.Exe
and Stmt.Qry
; consequently, any updates to Stmt.Cfg
after a call to Stmt.Exe
or Stmt.Qry
are not observed.
One configuration scenario may be to set a server's select statements to return nullable Go types by default:
sc := ora.NewSrvCfg()
sc.Dblink = "orcl"
sc.StmtCfg.Rset.SetNumberInt(ora.OraI64)
sc.StmtCfg.Rset.SetNumberFloat(ora.OraF64)
sc.StmtCfg.Rset.SetBinaryDouble(ora.OraF64)
sc.StmtCfg.Rset.SetBinaryFloat(ora.OraF64)
sc.StmtCfg.Rset.SetFloat(ora.OraF64)
sc.StmtCfg.Rset.SetDate(ora.OraT)
sc.StmtCfg.Rset.SetTimestamp(ora.OraT)
sc.StmtCfg.Rset.SetTimestampTz(ora.OraT)
sc.StmtCfg.Rset.SetTimestampLtz(ora.OraT)
sc.StmtCfg.Rset.SetChar1(ora.OraB)
sc.StmtCfg.Rset.SetVarchar(ora.OraS)
sc.StmtCfg.Rset.SetLong(ora.OraS)
sc.StmtCfg.Rset.SetClob(ora.OraS)
sc.StmtCfg.Rset.SetBlob(ora.OraBin)
sc.StmtCfg.Rset.SetRaw(ora.OraBin)
sc.StmtCfg.Rset.SetLongRaw(ora.OraBin)
srv, err := env.OpenSrv(sc)
// any new SesCfg.StmtCfg, StmtCfg.Cfg will receive this StmtCfg
// any new Rset will receive the StmtCfg.Rset configuration
Another scenario may be to configure the runes mapped to bool
values:
// update StmtCfg to change the FalseRune and TrueRune inserted into the database
// given: CREATE TABLE T1 (C1 CHAR(1 BYTE))
// insert 'false' record
var falseValue bool = false
stmt, err = ses.Prep("INSERT INTO T1 (C1) VALUES (:C1)")
stmt.Cfg().FalseRune = 'N'
stmt.Exe(falseValue)
// insert 'true' record
var trueValue bool = true
stmt, err = ses.Prep("INSERT INTO T1 (C1) VALUES (:C1)")
stmt.Cfg().TrueRune = 'Y'
stmt.Exe(trueValue)
// update RsetCfg to change the TrueRune
// used to translate an Oracle char to a Go bool
// fetch inserted records
stmt, err = ses.Prep("SELECT C1 FROM T1")
stmt.Cfg().Rset.TrueRune = 'Y'
rset, err := stmt.Qry()
for rset.Next() {
fmt.Println(rset.Row[0])
}
Oracle-specific types offered by the ora package are ora.Rset
, ora.IntervalYM
, ora.IntervalDS
,
ora.Raw
, ora.Lob
and ora.Bfile
. ora.Rset
represents an Oracle SYS_REFCURSOR. IntervalYM
represents
an Oracle INTERVAL YEAR TO MONTH. ora.IntervalDS
represents an Oracle INTERVAL DAY
TO SECOND. ora.Raw
represents an Oracle RAW or LONG RAW. ora.Lob
may represent an Oracle
BLOB or Oracle CLOB. And ora.Bfile
represents an Oracle BFILE. ROWID columns are
returned as strings and don't have a unique Go type.
Rset
is used to obtain Go values from a SQL select statement. Methods Rset.Next
,
Rset.NextRow
, and Rset.Len
are available. Fields Rset.Row
, Rset.Err
,
Rset.Index
, and Rset.ColumnNames
are also available. The Next
method attempts to
load data from an Oracle buffer into Row
, returning true when successful. When no data is available,
or if an error occurs, Next
returns false setting Row
to nil. Any error in Next
is assigned to Err
.
Calling Next
increments Index
and method Len
returns the total number of rows processed. The NextRow
method is convenient for returning a single row. NextRow
calls Next
and returns Row
.
ColumnNames
returns the names of columns defined by the SQL select statement.
Rset
has two usages. Rset
may be returned from Stmt.Qry
when prepared with a SQL select
statement:
// given: CREATE TABLE T1 (C1 NUMBER, C2, CHAR(1 BYTE), C3 VARCHAR2(48 CHAR))
stmt, err = ses.Prep("SELECT C1, C2, C3 FROM T1")
rst, err := stmt.Qry()
for rst.Next() {
fmt.Println(rst.Index, rst.Row[0], rst.Row[1], rst.Row[2])
}
Or, *Rset
may be passed to Stmt.Exe
when prepared with a stored procedure accepting
an OUT SYS_REFCURSOR parameter:
// given:
// CREATE TABLE T1 (C1 NUMBER, C2 VARCHAR2(48 CHAR))
// CREATE OR REPLACE PROCEDURE PROC1(P1 OUT SYS_REFCURSOR) AS
// BEGIN OPEN P1 FOR SELECT C1, C2 FROM T1 ORDER BY C1; END PROC1;
stmt, err = ses.Prep("CALL PROC1(:1)")
rst := &ora.Rset{}
stmt.Exe(rst)
if rst.IsOpen() {
for rst.Next() {
fmt.Println(rst.Row[0], rst.Row[1])
}
}
Stored procedures with multiple OUT SYS_REFCURSOR parameters enable a single Exe
call to obtain
multiple Rsets
:
// given:
// CREATE TABLE T1 (C1 NUMBER, C2 VARCHAR2(48 CHAR))
// CREATE OR REPLACE PROCEDURE PROC1(P1 OUT SYS_REFCURSOR, P2 OUT SYS_REFCURSOR) AS BEGIN
// OPEN P1 FOR SELECT C1 FROM T1 ORDER BY C1; OPEN P2 FOR SELECT C2 FROM T1 ORDER BY C2;
// END PROC1;
stmt, err = ses.Prep("CALL PROC1(:1, :2)")
rst1 := &ora.Rset{}
rst2 := &ora.Rset{}
stmt.Exe(rst1, rst2)
// read from first cursor
if rst1.IsOpen() {
for rst1.Next() {
fmt.Println(rst1.Row[0])
}
}
// read from second cursor
if rst2.IsOpen() {
for rst2.Next() {
fmt.Println(rst2.Row[0])
}
}
The types of values assigned to Row
may be configured in StmtCfg.Rset
. For configuration
to take effect, assign StmtCfg.Rset
prior to calling Stmt.Qry
or Stmt.Exe
.
Rset
prefetching may be controlled by StmtCfg.PrefetchRowCount
and
StmtCfg.PrefetchMemorySize
. PrefetchRowCount
works in coordination with
PrefetchMemorySize
. When PrefetchRowCount
is set to zero only PrefetchMemorySize
is used;
otherwise, the minimum of PrefetchRowCount
and PrefetchMemorySize
is used.
The default uses a PrefetchMemorySize
of 134MB.
Opening and closing Rsets
is managed internally. Rset
does not have an Open method or Close method.
IntervalYM
may be be inserted and selected:
// insert IntervalYM slice
// given: create table t1 (c1 interval year to month)
a := make([]ora.IntervalYM, 5)
a[0] = ora.IntervalYM{Year: 1, Month: 1}
a[1] = ora.IntervalYM{Year: 99, Month: 9}
a[2] = ora.IntervalYM{IsNull: true}
a[3] = ora.IntervalYM{Year: -1, Month: -1}
a[4] = ora.IntervalYM{Year: -99, Month: -9}
stmt, err = ses.Prep("INSERT INTO T1 (C1) VALUES (:C1)")
stmt.Exe(a)
// query IntervalYM
stmt, err = ses.Prep("SELECT C1 FROM T1")
rst, err := stmt.Qry()
for rst.Next() {
fmt.Println(rst.Row[0])
}
IntervalDS
may be be inserted and selected:
// insert IntervalDS slice
// given: CREATE TABLE T1 (C1 INTERVAL DAY TO SECOND)
a := make([]ora.IntervalDS, 5)
a[0] = ora.IntervalDS{Day: 1, Hour: 1, Minute: 1, Second: 1, Nanosecond: 123456789}
a[1] = ora.IntervalDS{Day: 59, Hour: 59, Minute: 59, Second: 59, Nanosecond: 123456789}
a[2] = ora.IntervalDS{IsNull: true}
a[3] = ora.IntervalDS{Day: -1, Hour: -1, Minute: -1, Second: -1, Nanosecond: -123456789}
a[4] = ora.IntervalDS{Day: -59, Hour: -59, Minute: -59, Second: -59, Nanosecond: -123456789}
stmt, err = ses.Prep("INSERT INTO T1 (C1) VALUES (:C1)")
stmt.Exe(a)
// query IntervalDS
stmt, err = ses.Prep("SELECT C1 FROM T1")
rst, err := stmt.Qry()
for rst.Next() {
fmt.Println(rst.Row[0])
}
Transactions on an Oracle server are supported. DML statements auto-commit unless a transaction has started:
// given: create table t1 (c1 number)
// rollback
tx, err := ses.BeginTransaction()
stmt, err = ses.Prep("INSERT INTO T1 (C1) VALUES (3)")
stmt.Exe()
stmt, err = ses.Prep("INSERT INTO T1 (C1) VALUES (5)")
stmt.Exe()
tx.Rollback()
// commit
tx, err = ses.BeginTransaction()
stmt, err = ses.Prep("INSERT INTO T1 (C1) VALUES (7)")
stmt.Exe()
stmt, err = ses.Prep("INSERT INTO T1 (C1) VALUES (9)")
stmt.Exe()
tx.Commit()
// query records
stmt, err = ses.Prep("SELECT C1 FROM T1")
rst, err := stmt.Qry()
for rst.Next() {
fmt.Println(rst.Row[0])
}
Ses.PrepAndExe
, Ses.PrepAndQry
, Ses.Ins
, Ses.Upd
, and Ses.Sel
are convenient
one-line methods.
Ses.PrepAndExe
offers a convenient one-line call to Ses.Prep
and Stmt.Exe
.
rowsAffected, err := ses.PrepAndExe("CREATE TABLE T1 (C1 NUMBER)")
Ses.PrepAndQry
offers a convenient one-line call to Ses.Prep
and Stmt.Qry
.
rset, err := ses.PrepAndQry("SELECT CURRENT_TIMESTAMP FROM DUAL")
Ses.Ins
composes, prepares and executes a sql INSERT statement. Ses.Ins
is useful
when you have to create and maintain a simple INSERT statement with a long
list of columns. As table columns are added and dropped over the lifetime of
a table Ses.Ins
is easy to read and revise.
err = ses.Ins("T1",
"C2", e.C2,
"C3", e.C3,
"C4", e.C4,
"C5", e.C5,
"C6", e.C6,
"C7", e.C7,
"C8", e.C8,
"C9", e.C9,
"C10", e.C10,
"C11", e.C11,
"C12", e.C12,
"C13", e.C13,
"C14", e.C14,
"C15", e.C15,
"C16", e.C16,
"C17", e.C17,
"C18", e.C18,
"C19", e.C19,
"C20", e.C20,
"C21", e.C21,
"C1", &e.C1)
Ses.Upd
composes, prepares and executes a sql UPDATE statement. Ses.Upd
is useful
when you have to create and maintain a simple UPDATE statement with a long list
of columns. As table columns are added and dropped over the lifetime of
a table Ses.Upd
is easy to read and revise.
err = ses.Upd("T1",
"C2", e.C2*2,
"C3", e.C3*2,
"C4", e.C4*2,
"C5", e.C5*2,
"C6", e.C6*2,
"C7", e.C7*2,
"C8", e.C8*2,
"C9", e.C9*2,
"C10", e.C10*2,
"C11", e.C11*2,
"C12", e.C12*2,
"C13", e.C13*2,
"C14", e.C14*2,
"C15", e.C15*2,
"C16", e.C16*2,
"C17", e.C17*2,
"C18", e.C18*2,
"C19", e.C19*2,
"C20", e.C20*2,
"C21", e.C21*2,
"C1", e.C1)
Ses.Sel
composes, prepares and queries a sql SELECT statement. Ses.Sel
is useful
when you have to create and maintain a simple SELECT statement with a long
list of columns that have non-default GoColumnTypes. As table columns are added
and dropped over the lifetime of a table Ses.Sel
is easy to read and revise.
rset, err := ses.Sel("T1",
"C1", ora.U64,
"C2", ora.F64,
"C3", ora.I8,
"C4", ora.I16,
"C5", ora.I32,
"C6", ora.I64,
"C7", ora.U8,
"C8", ora.U16,
"C9", ora.U32,
"C10", ora.U64,
"C11", ora.F32,
"C12", ora.F64,
"C13", ora.I8,
"C14", ora.I16,
"C15", ora.I32,
"C16", ora.I64,
"C17", ora.U8,
"C18", ora.U16,
"C19", ora.U32,
"C20", ora.U64,
"C21", ora.F32)
The Ses.Ping
method checks whether the client's connection to an
Oracle server is valid. A call to Ping
requires an open Ses. Ping
will return a nil error when the connection is fine:
// open a session before calling Ping
ses, _ := srv.OpenSes("username", "password")
err := ses.Ping()
if err == nil {
fmt.Println("Ping successful")
}
The Srv.Version
method is available to obtain the Oracle server version. A call
to Version
requires an open Ses:
// open a session before calling Version
ses, err := srv.OpenSes("username", "password")
version, err := srv.Version()
if version != "" && err == nil {
fmt.Println("Received version from server")
}
Further code examples are available in the example file, test files and samples folder.
The ora package provides a simple ora.Logger interface for logging. Logging is disabled by default. Specify one of three optional built-in logging packages to enable logging; or, use your own logging package.
ora.Cfg().Log offers various options to enable or disable logging of specific ora driver methods. For example:
// enable logging of the Rset.Next method
ora.Cfg().Log.Rset.Next = true
To use the standard Go log package:
import (
"gopkg.in/rana/ora.v3"
"gopkg.in/rana/ora.v3/lg"
)
func main() {
// use the optional log package for ora logging
ora.Cfg().Log.Logger = lg.Log
}
which produces a sample log of:
ORA I 2015/05/23 16:54:44.615462 drv.go:411: OpenEnv 1
ORA I 2015/05/23 16:54:44.626443 drv.go:411: OpenEnv 2
ORA I 2015/05/23 16:54:44.627465 env.go:115: E2] OpenSrv (dbname orcl)
ORA I 2015/05/23 16:54:44.643449 env.go:150: E2] OpenSrv (srvId 1)
ORA I 2015/05/23 16:54:44.643449 srv.go:113: E2S1] OpenSes (username test)
ORA I 2015/05/23 16:54:44.665451 ses.go:163: E2S1S1] Prep: SELECT CURRENT_TIMESTAMP FROM DUAL
ORA I 2015/05/23 16:54:44.666451 rset.go:205: E2S1S1S1R0] open
ORA I 2015/05/23 16:54:44.666451 ses.go:74: E2S1S1] Close
ORA I 2015/05/23 16:54:44.666451 stmt.go:78: E2S1S1S1] Close
ORA I 2015/05/23 16:54:44.666451 rset.go:57: E2S1S1S1R0] close
ORA I 2015/05/23 16:54:44.666451 srv.go:63: E2S1] Close
ORA I 2015/05/23 16:54:44.667451 env.go:68: E2] Close
Messages are prefixed with 'ORA I' for information or 'ORA E' for an error. The log package is configured to write to os.Stderr by default. Use the ora/lg.Std type to configure an alternative io.Writer.
To use the glog package:
import (
"flag"
"gopkg.in/rana/ora.v3"
"gopkg.in/rana/ora.v3/glg"
)
func main() {
// parse flags for glog (required)
// consider specifying cmd line arg -alsologtostderr=true
flag.Parse()
// use the glog package for ora logging
ora.Cfg().Log.Logger = glg.Log
}
which produces a sample log of:
I0523 17:31:41.702365 97708 drv.go:411] OpenEnv 1
I0523 17:31:41.728377 97708 drv.go:411] OpenEnv 2
I0523 17:31:41.728377 97708 env.go:115] E2] OpenSrv (dbname orcl)
I0523 17:31:41.741390 97708 env.go:150] E2] OpenSrv (srvId 1)
I0523 17:31:41.741390 97708 srv.go:113] E2S1] OpenSes (username test)
I0523 17:31:41.762366 97708 ses.go:163] E2S1S1] Prep: SELECT CURRENT_TIMESTAMP FROM DUAL
I0523 17:31:41.762366 97708 rset.go:205] E2S1S1S1R0] open
I0523 17:31:41.762366 97708 ses.go:74] E2S1S1] Close
I0523 17:31:41.762366 97708 stmt.go:78] E2S1S1S1] Close
I0523 17:31:41.762366 97708 rset.go:57] E2S1S1S1R0] close
I0523 17:31:41.763365 97708 srv.go:63] E2S1] Close
I0523 17:31:41.763365 97708 env.go:68] E2] Close
To use the log15 package:
import (
"gopkg.in/rana/ora.v3"
"gopkg.in/rana/ora.v3/lg15"
)
func main() {
// use the optional log15 package for ora logging
ora.Cfg().Log.Logger = lg15.Log
}
which produces a sample log of:
t=2015-05-23T17:08:32-0700 lvl=info msg="OpenEnv 1" lib=ora
t=2015-05-23T17:08:32-0700 lvl=info msg="OpenEnv 2" lib=ora
t=2015-05-23T17:08:32-0700 lvl=info msg="E2] OpenSrv (dbname orcl)" lib=ora
t=2015-05-23T17:08:32-0700 lvl=info msg="E2] OpenSrv (srvId 1)" lib=ora
t=2015-05-23T17:08:32-0700 lvl=info msg="E2S1] OpenSes (username test)" lib=ora
t=2015-05-23T17:08:32-0700 lvl=info msg="E2S1S1] Prep: SELECT CURRENT_TIMESTAMP FROM DUAL" lib=ora
t=2015-05-23T17:08:32-0700 lvl=info msg="E2S1S1S1R0] open" lib=ora
t=2015-05-23T17:08:32-0700 lvl=info msg="E2S1S1] Close" lib=ora
t=2015-05-23T17:08:32-0700 lvl=info msg="E2S1S1S1] Close" lib=ora
t=2015-05-23T17:08:32-0700 lvl=info msg="E2S1S1S1R0] close" lib=ora
t=2015-05-23T17:08:32-0700 lvl=info msg="E2S1] Close" lib=ora
t=2015-05-23T17:08:32-0700 lvl=info msg="E2] Close" lib=ora
Tests are available and require some setup. Setup varies depending on whether the Oracle server is configured as a container database or non-container database. It's simpler to setup a non-container database. An example for each setup is explained.
Non-container test database setup steps:
-- 1. login to an Oracle server with SqlPlus as sysdba:
SQLPLUS / AS SYSDBA
-- 2. create a file for the test database use
CREATE TABLESPACE test_ts NOLOGGING DATAFILE 'test.dat' SIZE 100M AUTOEXTEND ON;
-- 3. create a test database
CREATE USER test IDENTIFIED BY test DEFAULT TABLESPACE test_ts;
-- 4. grant permissions to the database
GRANT
CREATE SESSION,
CREATE TABLE, CREATE VIEW, CREATE SEQUENCE,
CREATE PROCEDURE, UNLIMITED TABLESPACE,
SELECT ANY DICTIONARY
TO test;
-- 5. increase the number allowable open cursors
ALTER SYSTEM SET OPEN_CURSORS = 400 SCOPE=BOTH;
-- 6. create OS environment variables
-- specify your_database_name; varies based on installation; may be 'orcl'
GO_ORA_DRV_TEST_DB = your_database_name
GO_ORA_DRV_TEST_USERNAME = test
GO_ORA_DRV_TEST_PASSWORD = test
Container test database setup steps:
-- 1. login to an Oracle server with SqlPlus as sysdba:
SQLPLUS / AS SYSDBA
-- 2. create a test pluggable database and permissions
-- you will need to change the FILE_NAME_CONVERT file paths for your database installation
CREATE PLUGGABLE DATABASE go_driver_test
ADMIN USER test IDENTIFIED BY test
ROLES = (DBA)
FILE_NAME_CONVERT = ('d:\oracle\data\orcl\pdbseed\', 'd:\oracle\data\go_driver_test\');
-- 3. modify the pluggable database settings
ALTER PLUGGABLE DATABASE go_driver_test OPEN;
ALTER SESSION SET CONTAINER = go_driver_test;
GRANT DBA TO test;
-- 4. add new database service to the tnsnames.ora file:
-- located on your client machine in $ORACLE_HOME\network\admin\tnsnames.ora
GO_DRIVER_TEST =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP)(HOST = localhost)(PORT = 1521))
(CONNECT_DATA =
(SERVER = DEDICATED)
(SERVICE_NAME = go_driver_test)
)
)
-- 5. create OS environment variables
GO_ORA_DRIVER_TEST_DB = go_driver_test
GO_ORA_DRIVER_TEST_USERNAME = test
GO_ORA_DRIVER_TEST_PASSWORD = test
Some helpful SQL maintenance statements:
-- delete all tables in a non-container database
BEGIN
FOR c IN (SELECT table_name FROM user_tables) LOOP
EXECUTE IMMEDIATE ('DROP TABLE "' || c.table_name || '" CASCADE CONSTRAINTS');
END LOOP;
END;
-- delete the non-container test database; use SqlPlus as sysdba
DROP USER test CASCADE;
Run the tests.
database/sql method Stmt.QueryRow
is not supported.
Copyright 2014 Rana Ian. All rights reserved. Use of this source code is governed by The MIT License found in the accompanying LICENSE file.