Skip to content

rijalmyd/e-KTP-OCR-CNN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

KTP-Indonesian_ID_Card-OCR

This project aims to create an API that can scan and convert important data (NIK, Name, Place and Date of Birth) from a KTP image into text using PyTesseract Optical Character Recognition (OCR). In addition there is also a deep learning (CNN) based KTP detector that can classify the image whether the image is KTP or not. Thanks to the developers who have developed most of the contents of this system before.

Prerequisites

  • Flask
pip install flask
  • Numpy
pip install numpy
  • OpenCV
pip install opencv-contrib-python==4.5.1.48
  • Pandas
pip install pandas
  • PIL
pip install pillow
  • PyTesseract
sudo apt-get install tesseract-ocr
sudo apt-get install tesseract-ocr-ind
pip install pytesseract
  • TextDistance
pip install textdistance

Running the Program

To run the program, use the command below:

export FLASK_APP=api.py
flask run

or alternatively using this command:

python api.py

Request Parameter

Parameter Data Type Mandatory Notes
image Image Files M Foto KTP

Response Parameter

Parameter Description
nik NIK dari hasil OCR
nama Nama dari hasil OCR
tempat_lahir Nama tempat lahir dari hasil OCR
tgl_lahir Tanggal lahir dari hasil OCR (DD-MM-YYYY)
time_elapsed Waktu yang pemrosesan yang dibutuhkan (detik)

Success Response Example

{
    "error": false,
    "message": "Proses OCR Berhasil",
    "result": {
        "nik": "1234567890123456",
        "nama": "RIJAL MUHYIDIN",
        "tempat_lahir": "PALEMBANG",
        "tgl_lahir": "10-10-1999",
        "jenis_kelamin": "LAKI-LAKI",
        "agama": "ISLAM",
        "status_perkawinan": "BELUM KAWIN",
        "pekerjaan": "PELAJAR/MAHASISWA",
        "kewarganegaraan": "WNI",
        "alamat": {
            "name": "DUSUN 1 OGAN 5",
            "rt_rw": "001/002",
            "kel_desa": "SUNGAI ARE",
            "kecamatan": "ALANG-ALANG LEBAR",
            "kabupaten": "OGAN ILIR",
            "provinsi": "SUMATERA SELATAN"
        },
        "time_elapsed": "6.306"
    }
}

Notes for KTP Detection using CNN

  1. Create new folder, data/cnn
  2. Insert model.h5 in that folder. (https://drive.google.com/file/d/12TJDTv0lnwE3lfkHRLuDt3J85FbyFD8R/view?usp=sharing)
  3. Run the program

Acknowledgments

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages