This package is a collection of Fortran 90 subroutines for accurately and efficiently solving matrix eigenvalue problems using essentially 2x2 unitary matrices.
- Jared L. Aurentz, University of Oxford, United Kingdom
- Thomas Mach, KU Leuven, Belgium
- Raf Vandebril, KU Leuven, Belgium
- David S. Watkins, Washington State University, United States
To get started with eiscor please checkout the [guide] (https://github.com/eiscor/eiscor/blob/master/docs/GUIDE.md).
This software is based on the following articles:
- Jared L. Aurentz, Thomas Mach, Raf Vandebril, and David S. Watkins. Fast and stable unitary QR algorithm. Electronic Transactions on Numerical Analysis. To appear.
- Jared L. Aurentz, Thomas Mach, Raf Vandebril, and David S. Watkins. [Fast and backward stable computation of roots of polynomials.] (http://www.cs.kuleuven.be/publicaties/rapporten/tw/TW654.abs.html) SIAM Journal on Matrix Analysis and Applications. To appear.
- Thomas Mach and Raf Vandebril. [On deflations in extended QR Algorithms.] (http://epubs.siam.org/doi/abs/10.1137/130935665) SIAM Journal on Matrix Analysis and Applications. Vol. 35, No. 2, pp. 559–579. 2014.
- Raf Vandebril and David S. Watkins. [An extension of the QZ algorithm beyond the Hessenberg-upper triangular pencil.](http://etna.mcs.kent.edu/ volumes/2011-2020/vol40/abstract.php?vol=40&pages=17-35) Electronic Transactions on Numerical Analysis. Vol. 40, pp. 17-35. 2013.
- Raf Vandebril and David S. Watkins. A generalization of the multishift QR-algorithm. SIAM Journal on Matrix Analysis and Applications. Vol. 33, No. 3, pp. 759-779. 2012.
- Raf Vandebril. Chasing bulges or rotations? A metamorphosis of the QR-algorithm. SIAM Journal on Matrix Analysis and Applications. Vol. 32, No. 1, pp. 217-247. 2011.