Skip to content

rumbleFTW/retinal-segmentation

Repository files navigation

Retinal Blood-Vessel Segmentation

sample

Running on local machine

To set up the project, you will need to have Python 3.7 or above and Poetry installed on your machine.

Clone the repository to your local machine:

git clone https://github.com/rumbleFTW/retinal-segmentation.git
cd retinal-segmentation

Navigate to the project directory:

cd retinal-segmentation

Install the dependencies:

pip install -r requirements.txt

Training

To train models, run the following command in the terminal:

python train.py --data /path/to/data --network att_unet --device cuda

Arguments

  • --data: (required) The path to the data folder.
  • --network: (required) The network type to use. Available options are att_unet, unet &, seg_net.
  • --device: (optional) The device to use. Default is cpu.

Example

Here's an example of training an AttentionUNet Network on cuda:

python train.py --data ./data/DRIVE --network att_unet --device cuda

Inference

To inference on images, run the following command in the terminal:

python infer.py --img /path/to/image.jpg --network unet --device cpu --checkpt /path/to/checkpoint.pth

Arguments

  • --img: (required) the path to the image to test.
  • --network: (required) the type of neural network to use for testing. Available options include att_unet, unet, and seg_net
  • --device: (optional) the device to use for testing, default is "cpu".
  • --checkpt: (required) the path to the checkpoint .pth file.

Testing

To test models on a dataset, run the following command in the terminal:

python test.py --data /path/to/data --network att_unet --checkpt /path/to/checkpoint.pth

Arguments

  • --data: (required) The path to the data folder.
  • --network: (required) The network type to use. Available options are att_unet, unet &, seg_net.
  • --checkpt: (required) the path to the checkpoint .pth file.

Gradio demo

Place checkpoints in the directory checkpts under the name: att_unet-weights.pth, seg_net-weights.pth, unet-weights.pth

  python gradio_demo.py

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published