-
-
Notifications
You must be signed in to change notification settings - Fork 514
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
gh-38281: Addition of Chow ring ideal and Chow ring classes
<!-- ^ Please provide a concise and informative title. --> <!-- ^ Don't put issue numbers in the title, do this in the PR description below. --> <!-- ^ For example, instead of "Fixes #12345" use "Introduce new method to calculate 1 + 2". --> <!-- v Describe your changes below in detail. --> <!-- v Why is this change required? What problem does it solve? --> <!-- v If this PR resolves an open issue, please link to it here. For example, "Fixes #12345". --> This PR is focused on addition of classes for Chow ring ideal and Chow ring of matroids. [Check relevant issue.](#37987) The ideals classes consist of the Chow ring ideal and Augmented Chow ring ideal, with Gröbner basis for each of them. The Chow ring class is an initial version. @tscrim ### 📝 Checklist <!-- Put an `x` in all the boxes that apply. --> - [x] The title is concise and informative. - [x] The description explains in detail what this PR is about. - [x] I have linked a relevant issue or discussion. - [x] I have created tests covering the changes. - [x] I have updated the documentation and checked the documentation preview. ### ⌛ Dependencies <!-- List all open PRs that this PR logically depends on. For example, --> <!-- - #12345: short description why this is a dependency --> <!-- - #34567: ... --> URL: #38281 Reported by: 25shriya Reviewer(s): 25shriya, Travis Scrimshaw
- Loading branch information
Showing
5 changed files
with
1,209 additions
and
82 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,339 @@ | ||
r""" | ||
Chow rings of matroids | ||
AUTHORS: | ||
- Shriya M | ||
""" | ||
|
||
from sage.matroids.chow_ring_ideal import ChowRingIdeal_nonaug, AugmentedChowRingIdeal_fy, AugmentedChowRingIdeal_atom_free | ||
from sage.rings.quotient_ring import QuotientRing_generic | ||
from sage.categories.graded_algebras_with_basis import GradedAlgebrasWithBasis | ||
from sage.categories.commutative_rings import CommutativeRings | ||
|
||
class ChowRing(QuotientRing_generic): | ||
r""" | ||
The Chow ring of a matroid. | ||
The *Chow ring of the matroid* `M` is defined as the quotient ring | ||
.. MATH:: | ||
A^*(M)_R := R[x_{F_1}, \ldots, x_{F_k}] / (I_M + J_M), | ||
where `(I_M + J_M)` is the :class:`Chow ring ideal | ||
<sage.matroids.chow_ring_ideal.ChowRingIdeal_nonaug>` of matroid `M`. | ||
The *augmented Chow ring of matroid* `M` has two different presentations | ||
as quotient rings: | ||
The *Feitchner-Yuzvinsky presentation* is the quotient ring | ||
.. MATH:: | ||
A(M)_R := R[y_{e_1}, \ldots, y_{e_n}, x_{F_1}, \ldots, x_{F_k}] / I_{FY}(M), | ||
where `I_{FY}(M)` is the :class:`Feitchner-Yuzvinsky augmented Chow ring | ||
ideal <sage.matroids.chow_ring_ideal.AugmentedChowRingIdeal_fy>` | ||
of matroid `M`. | ||
The *atom-free presentation* is the quotient ring | ||
.. MATH:: | ||
A(M)_R := R[x_{F_1}, \ldots, x_{F_k}] / I_{af}(M), | ||
where `I_{af}(M)` is the :class:`atom-free augmented Chow ring ideal | ||
<sage.matroids.chow_ring_ideal.AugmentedChowRingIdeal_atom_free>` | ||
of matroid `M`. | ||
.. SEEALSO:: | ||
:mod:`sage.matroids.chow_ring_ideal` | ||
INPUT: | ||
- ``M`` -- matroid | ||
- ``R`` -- commutative ring | ||
- ``augmented`` -- boolean; when ``True``, this is the augmented | ||
Chow ring and if ``False``, this is the non-augmented Chow ring | ||
- ``presentation`` -- string (default: ``None``); one of the following | ||
(ignored if ``augmented=False``) | ||
* ``"fy"`` - the Feitchner-Yuzvinsky presentation | ||
* ``"atom-free"`` - the atom-free presentation | ||
REFERENCES: | ||
- [FY2004]_ | ||
- [AHK2015]_ | ||
EXAMPLES:: | ||
sage: M1 = matroids.catalog.P8pp() | ||
sage: ch = M1.chow_ring(QQ, False) | ||
sage: ch | ||
Chow ring of P8'': Matroid of rank 4 on 8 elements with 8 nonspanning circuits | ||
over Rational Field | ||
""" | ||
def __init__(self, R, M, augmented, presentation=None): | ||
r""" | ||
Initialize ``self``. | ||
EXAMPLES:: | ||
sage: ch = matroids.Wheel(3).chow_ring(QQ, False) | ||
sage: TestSuite(ch).run() | ||
""" | ||
self._matroid = M | ||
self._augmented = augmented | ||
self._presentation = presentation | ||
if augmented is True: | ||
if presentation == 'fy': | ||
self._ideal = AugmentedChowRingIdeal_fy(M, R) | ||
elif presentation == 'atom-free': | ||
self._ideal = AugmentedChowRingIdeal_atom_free(M, R) | ||
else: | ||
self._ideal = ChowRingIdeal_nonaug(M, R) | ||
C = CommutativeRings().Quotients() & GradedAlgebrasWithBasis(R).FiniteDimensional() | ||
QuotientRing_generic.__init__(self, R=self._ideal.ring(), | ||
I=self._ideal, | ||
names=self._ideal.ring().variable_names(), | ||
category=C) | ||
|
||
def _repr_(self): | ||
r""" | ||
EXAMPLES:: | ||
sage: M1 = matroids.catalog.Fano() | ||
sage: ch = M1.chow_ring(QQ, False) | ||
sage: ch | ||
Chow ring of Fano: Binary matroid of rank 3 on 7 elements, type (3, 0) | ||
over Rational Field | ||
""" | ||
output = "Chow ring of {}".format(self._matroid) | ||
if self._augmented is True: | ||
output = "Augmented " + output | ||
if self._presentation == 'fy': | ||
output += " in Feitchner-Yuzvinsky presentation" | ||
elif self._presentation == 'atom-free': | ||
output += " in atom-free presentation" | ||
return output + " over " + repr(self.base_ring()) | ||
|
||
def _latex_(self): | ||
r""" | ||
Return the LaTeX output of the polynomial ring and Chow ring ideal. | ||
EXAMPLES:: | ||
sage: M1 = matroids.Uniform(2,5) | ||
sage: ch = M1.chow_ring(QQ, False) | ||
sage: ch._latex_() | ||
'A(\\begin{array}{l}\n\\text{\\texttt{U(2,{ }5):{ }Matroid{ }of{ }rank{ }2{ }on{ }5{ }elements{ }with{ }circuit{-}closures}}\\\\\n\\text{\\texttt{{\\char`\\{}2:{ }{\\char`\\{}{\\char`\\{}0,{ }1,{ }2,{ }3,{ }4{\\char`\\}}{\\char`\\}}{\\char`\\}}}}\n\\end{array})_{\\Bold{Q}}' | ||
""" | ||
from sage.misc.latex import latex | ||
base = "A({})_{{{}}}" | ||
if self._augmented: | ||
base += "^*" | ||
return base.format(latex(self._matroid), latex(self.base_ring())) | ||
|
||
def matroid(self): | ||
r""" | ||
Return the matroid of ``self``. | ||
EXAMPLES:: | ||
sage: ch = matroids.Uniform(3,6).chow_ring(QQ, True, 'fy') | ||
sage: ch.matroid() | ||
U(3, 6): Matroid of rank 3 on 6 elements with circuit-closures | ||
{3: {{0, 1, 2, 3, 4, 5}}} | ||
""" | ||
return self._matroid | ||
|
||
def _coerce_map_from_base_ring(self): | ||
r""" | ||
Disable the coercion from the base ring from the category. | ||
TESTS:: | ||
sage: ch = matroids.Wheel(3).chow_ring(QQ, False) | ||
sage: ch._coerce_map_from_base_ring() is None | ||
True | ||
""" | ||
return None # don't need anything special | ||
|
||
def basis(self): | ||
r""" | ||
Return the monomial basis of the given Chow ring. | ||
EXAMPLES:: | ||
sage: ch = matroids.Uniform(3, 6).chow_ring(QQ, True, 'fy') | ||
sage: ch.basis() | ||
Family (1, B1, B1*B012345, B0, B0*B012345, B01, B01^2, B2, | ||
B2*B012345, B02, B02^2, B12, B12^2, B3, B3*B012345, B03, B03^2, | ||
B13, B13^2, B23, B23^2, B4, B4*B012345, B04, B04^2, B14, B14^2, | ||
B24, B24^2, B34, B34^2, B5, B5*B012345, B05, B05^2, B15, B15^2, | ||
B25, B25^2, B35, B35^2, B45, B45^2, B012345, B012345^2, B012345^3) | ||
sage: set(ch.defining_ideal().normal_basis()) == set(ch.basis()) | ||
True | ||
sage: ch = matroids.catalog.Fano().chow_ring(QQ, False) | ||
sage: ch.basis() | ||
Family (1, Abcd, Aace, Aabf, Adef, Aadg, Abeg, Acfg, Aabcdefg, | ||
Aabcdefg^2) | ||
sage: set(ch.defining_ideal().normal_basis()) == set(ch.basis()) | ||
True | ||
sage: ch = matroids.Wheel(3).chow_ring(QQ, True, 'atom-free') | ||
sage: ch.basis() | ||
Family (1, A0, A0*A012345, A2, A2*A012345, A3, A3*A012345, A23, | ||
A23^2, A1, A1*A012345, A013, A013^2, A4, A4*A012345, A04, A04^2, | ||
A124, A124^2, A5, A5*A012345, A025, A025^2, A15, A15^2, A345, | ||
A345^2, A012345, A012345^2, A012345^3) | ||
sage: set(ch.defining_ideal().normal_basis()) == set(ch.basis()) | ||
True | ||
""" | ||
from sage.sets.family import Family | ||
monomial_basis = self._ideal.normal_basis() | ||
return Family([self.element_class(self, mon, reduce=False) for mon in monomial_basis]) | ||
|
||
class Element(QuotientRing_generic.Element): | ||
def to_vector(self, order=None): | ||
r""" | ||
Return ``self`` as a (dense) free module vector. | ||
EXAMPLES:: | ||
sage: ch = matroids.Uniform(3, 6).chow_ring(QQ, False) | ||
sage: v = ch.an_element(); v | ||
-A01 - A02 - A03 - A04 - A05 - A012345 | ||
sage: v.to_vector() | ||
(0, -1, -1, 0, -1, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0) | ||
""" | ||
P = self.parent() | ||
B = P.basis() | ||
FM = P._dense_free_module() | ||
f = self.lift() | ||
return FM([f.monomial_coefficient(b.lift()) for b in B]) | ||
|
||
_vector_ = to_vector | ||
|
||
def monomial_coefficients(self, copy=None): | ||
r""" | ||
Return the monomial coefficients of ``self``. | ||
EXAMPLES:: | ||
sage: ch = matroids.catalog.NonFano().chow_ring(QQ, True, 'atom-free') | ||
sage: v = ch.an_element(); v | ||
Aa | ||
sage: v.monomial_coefficients() | ||
{0: 0, 1: 1, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0, 9: 0, | ||
10: 0, 11: 0, 12: 0, 13: 0, 14: 0, 15: 0, 16: 0, 17: 0, | ||
18: 0, 19: 0, 20: 0, 21: 0, 22: 0, 23: 0, 24: 0, 25: 0, | ||
26: 0, 27: 0, 28: 0, 29: 0, 30: 0, 31: 0, 32: 0, 33: 0, | ||
34: 0, 35: 0} | ||
""" | ||
B = self.parent().basis() | ||
f = self.lift() | ||
return {i: f.monomial_coefficient(b.lift()) for i, b in enumerate(B)} | ||
|
||
def degree(self): | ||
r""" | ||
Return the degree of ``self``. | ||
EXAMPLES:: | ||
sage: ch = matroids.Uniform(3, 6).chow_ring(QQ, False) | ||
sage: for b in ch.basis(): | ||
....: print(b, b.degree()) | ||
1 0 | ||
A01 1 | ||
A02 1 | ||
A12 1 | ||
A03 1 | ||
A13 1 | ||
A23 1 | ||
A04 1 | ||
A14 1 | ||
A24 1 | ||
A34 1 | ||
A05 1 | ||
A15 1 | ||
A25 1 | ||
A35 1 | ||
A45 1 | ||
A012345 1 | ||
A012345^2 2 | ||
sage: v = sum(ch.basis()) | ||
sage: v.degree() | ||
2 | ||
""" | ||
return self.lift().degree() | ||
|
||
def homogeneous_degree(self): | ||
r""" | ||
Return the (homogeneous) degree of ``self`` if homogeneous | ||
otherwise raise an error. | ||
EXAMPLES:: | ||
sage: ch = matroids.catalog.Fano().chow_ring(QQ, True, 'fy') | ||
sage: for b in ch.basis(): | ||
....: print(b, b.homogeneous_degree()) | ||
1 0 | ||
Ba 1 | ||
Ba*Babcdefg 2 | ||
Bb 1 | ||
Bb*Babcdefg 2 | ||
Bc 1 | ||
Bc*Babcdefg 2 | ||
Bd 1 | ||
Bd*Babcdefg 2 | ||
Bbcd 1 | ||
Bbcd^2 2 | ||
Be 1 | ||
Be*Babcdefg 2 | ||
Bace 1 | ||
Bace^2 2 | ||
Bf 1 | ||
Bf*Babcdefg 2 | ||
Babf 1 | ||
Babf^2 2 | ||
Bdef 1 | ||
Bdef^2 2 | ||
Bg 1 | ||
Bg*Babcdefg 2 | ||
Badg 1 | ||
Badg^2 2 | ||
Bbeg 1 | ||
Bbeg^2 2 | ||
Bcfg 1 | ||
Bcfg^2 2 | ||
Babcdefg 1 | ||
Babcdefg^2 2 | ||
Babcdefg^3 3 | ||
sage: v = sum(ch.basis()); v | ||
Babcdefg^3 + Babf^2 + Bace^2 + Badg^2 + Bbcd^2 + Bbeg^2 + | ||
Bcfg^2 + Bdef^2 + Ba*Babcdefg + Bb*Babcdefg + Bc*Babcdefg + | ||
Bd*Babcdefg + Be*Babcdefg + Bf*Babcdefg + Bg*Babcdefg + | ||
Babcdefg^2 + Ba + Bb + Bc + Bd + Be + Bf + Bg + Babf + Bace + | ||
Badg + Bbcd + Bbeg + Bcfg + Bdef + Babcdefg + 1 | ||
sage: v.homogeneous_degree() | ||
Traceback (most recent call last): | ||
... | ||
ValueError: element is not homogeneous | ||
TESTS:: | ||
sage: ch = matroids.Wheel(3).chow_ring(QQ, True, 'atom-free') | ||
sage: ch.zero().homogeneous_degree() | ||
Traceback (most recent call last): | ||
... | ||
ValueError: the zero element does not have a well-defined degree | ||
""" | ||
if not self: | ||
raise ValueError("the zero element does not have a well-defined degree") | ||
f = self.lift() | ||
if not f.is_homogeneous(): | ||
raise ValueError("element is not homogeneous") | ||
return f.degree() |
Oops, something went wrong.