Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add parameter immutable to some graph operations in sage/graphs/generic_graph.py #39280

Open
wants to merge 10 commits into
base: develop
Choose a base branch
from
143 changes: 119 additions & 24 deletions src/sage/graphs/generic_graph.py
Original file line number Diff line number Diff line change
Expand Up @@ -19338,7 +19338,16 @@ def add_clique(self, vertices, loops=False):
sage: D.add_clique(range(4), loops=True)
sage: D.is_clique(directed_clique=True, loops=True)
True

Immutable graph::

sage: Graph(immutable=True).add_clique([1, 2, 3])
Traceback (most recent call last):
...
ValueError: graph is immutable; please change a copy instead (use function copy())
"""
if self.is_immutable():
raise ValueError("graph is immutable; please change a copy instead (use function copy())")
import itertools
if loops:
if self.is_directed():
Expand Down Expand Up @@ -19404,6 +19413,13 @@ def add_cycle(self, vertices):
sage: G.add_cycle(['a', 'b', 'c'])
sage: G.order(), G.size()
(3, 3)

Immutable graph::

sage: Graph(immutable=True).add_cycle([1, 2, 3])
Traceback (most recent call last):
...
ValueError: graph is immutable; please change a copy instead (use function copy())
"""
if vertices:
self.add_path(vertices)
Expand Down Expand Up @@ -19440,20 +19456,36 @@ def add_path(self, vertices):
sage: D.add_path(list(range(4)))
sage: D.edges(sort=True)
[(0, 1, None), (1, 2, None), (2, 3, None)]

TESTS:

Immutable graph::

sage: Graph(immutable=True).add_path([])
sage: Graph(immutable=True).add_path([1, 2, 3])
Traceback (most recent call last):
...
ValueError: graph is immutable; please change a copy instead (use function copy())
"""
if not vertices:
return
self.add_vertices(vertices)
self.add_edges(zip(vertices[:-1], vertices[1:]))

def complement(self):
def complement(self, immutable=None):
"""
Return the complement of the (di)graph.
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

missing backtick

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done (3 times).


The complement of a graph has the same vertices, but exactly those edges
that are not in the original graph. This is not well defined for graphs
with multiple edges.

INPUT:

- ``immutable`` -- boolean (default: ``None``); whether to return a
mutable or an immutable version of ``self``. By default (``None``),
the graph and its complement behave the same.

EXAMPLES::

sage: P = graphs.PetersenGraph()
Expand Down Expand Up @@ -19495,6 +19527,17 @@ def complement(self):
Graph on 10 vertices
sage: g.complement()
Graph on 10 vertices

Check the behavior of parameter ``immutable``::

sage: type(Graph().complement()._backend)
<class 'sage.graphs.base.dense_graph.DenseGraphBackend'>
sage: type(Graph().complement(immutable=True)._backend)
<class 'sage.graphs.base.static_sparse_backend.StaticSparseBackend'>
sage: type(Graph(immutable=True).complement()._backend)
<class 'sage.graphs.base.static_sparse_backend.StaticSparseBackend'>
sage: type(Graph(immutable=True).complement(immutable=False)._backend)
<class 'sage.graphs.base.dense_graph.DenseGraphBackend'>
"""
self._scream_if_not_simple()

Expand All @@ -19503,8 +19546,9 @@ def complement(self):

if self.name():
G.name("complement({})".format(self.name()))

if self.is_immutable():
if immutable is None:
immutable = self.is_immutable()
if immutable:
return G.copy(immutable=True)
return G

Expand Down Expand Up @@ -19558,12 +19602,31 @@ def to_simple(self, to_undirected=True, keep_label='any', immutable=None):
[(2, 3, 1), (3, 2, None)]
sage: G.to_simple(to_undirected=False, keep_label='max').edges(sort=True)
[(2, 3, 2), (3, 2, None)]

TESTS:

Check the behavior of parameter ``immutable``::

sage: G = Graph([(0, 0), (0, 1)] * 2, loops=True, multiedges=True, immutable=True)
sage: H = G.to_simple()
sage: H.is_immutable()
True
sage: H.edges(labels=False)
[(0, 1)]
sage: H = G.to_simple(immutable=False)
sage: H.is_immutable()
False
sage: G = Graph([(0, 0), (0, 1)] * 2, loops=True, multiedges=True, immutable=False)
sage: G.to_simple().is_immutable()
False
sage: G.to_simple(immutable=True).is_immutable()
True
"""
if to_undirected:
from sage.graphs.graph import Graph
g = Graph(self)
g = Graph(self, immutable=False)
else:
g = copy(self)
g = self.copy(immutable=False)
g.allow_loops(False)
g.allow_multiple_edges(False, keep_label=keep_label)
if immutable is None:
Expand Down Expand Up @@ -19620,8 +19683,27 @@ def disjoint_union(self, other, labels='pairs', immutable=None):
Custom path disjoint_union Cycle graph: Graph on 5 vertices
sage: J.vertices(sort=True)
[(0, 'a'), (0, 'b'), (1, 0), (1, 1), (1, 2)]

TESTS:

Check the behavior of parameter ``immutable``::

sage: G = Graph([(0, 1)])
sage: G.disjoint_union(G).is_immutable()
False
sage: G.disjoint_union(G, immutable=True).is_immutable()
True
sage: H = G.copy(immutable=True)
sage: H.disjoint_union(H).is_immutable()
True
sage: G.disjoint_union(G, immutable=False).is_immutable()
False
sage: H.disjoint_union(G).is_immutable()
False
sage: G.disjoint_union(G, immutable=True).is_immutable()
True
"""
if (self._directed and not other._directed) or (not self._directed and other._directed):
if self._directed != other._directed:
raise TypeError('both arguments must be of the same class')

if labels not in ['pairs', 'integers']:
Expand All @@ -19633,16 +19715,34 @@ def disjoint_union(self, other, labels='pairs', immutable=None):
else:
r_self = {v: (0, v) for v in self}
r_other = {v: (1, v) for v in other}
G = self.relabel(r_self, inplace=False).union(other.relabel(r_other, inplace=False), immutable=immutable)

from itertools import chain
vertices = chain(r_self.values(), r_other.values())
edges = chain(((r_self[u], r_self[v], w) for u, v, w in self.edge_iterator()),
((r_other[u], r_other[v], w) for u, v, w in other.edge_iterator()))

a = self.name()
if not a:
a = self._repr_()
b = other.name()
if not b:
b = other._repr_()
G._name = '{} disjoint_union {}'.format(a, b)
return G
name = f"{a} disjoint_union {b}"

multiedges = self.allows_multiple_edges() or other.allows_multiple_edges()
loops = self.allows_loops() or other.allows_loops()
weighted = self.weighted() and other.weighted()
if immutable is None:
immutable = self.is_immutable() and other.is_immutable()

if self._directed:
from sage.graphs.digraph import DiGraph as GT
else:
from sage.graphs.graph import Graph as GT

return GT([vertices, edges], format='vertices_and_edges',
weighted=weighted, loops=loops, multiedges=multiedges,
name=name, immutable=immutable)

def union(self, other, immutable=None):
"""
Expand Down Expand Up @@ -19719,30 +19819,25 @@ def union(self, other, immutable=None):
sage: D1.union(D2).weighted() or D2.union(D1).weighted()
False
"""
if (self._directed and not other._directed) or (not self._directed and other._directed):
if self._directed != other._directed:
raise TypeError('both arguments must be of the same class')

multiedges = self.allows_multiple_edges() or other.allows_multiple_edges()
loops = self.allows_loops() or other.allows_loops()
weighted = self.weighted() and other.weighted()
if immutable is None:
immutable = self.is_immutable() and other.is_immutable()

if self._directed:
from sage.graphs.digraph import DiGraph
G = DiGraph(multiedges=multiedges, loops=loops, weighted=weighted)
from sage.graphs.digraph import DiGraph as GT
else:
from sage.graphs.graph import Graph
G = Graph(multiedges=multiedges, loops=loops, weighted=weighted)
G.add_vertices(self)
G.add_vertices(other)
G.add_edges(self.edge_iterator())
G.add_edges(other.edge_iterator())
from sage.graphs.graph import Graph as GT

if immutable is None:
immutable = self.is_immutable() and other.is_immutable()
if immutable:
G = G.copy(immutable=True)

return G
from itertools import chain
return GT([chain(self, other),
chain(self.edge_iterator(), other.edge_iterator())],
format='vertices_and_edges', weighted=weighted, loops=loops,
multiedges=multiedges, immutable=immutable)

def cartesian_product(self, other):
r"""
Expand Down
Loading