Skip to content

v0.1.0

Compare
Choose a tag to compare
@sanjaradylov sanjaradylov released this 13 Sep 13:20
· 26 commits to main since this release

Fixes

  • πŸ› skfb.estimators.RateFallbackClassifierCV accepts only one fallback rate (#11).
  • 🐞 skfb.metrics.PAConfusionMatrixDisplay accepts rejector pipelines (#18).

Features

Stable

  • Predict-reject recall score skfb.metrics.predict_reject_recall_score (#14).
  • New estimators accept fitted estimators and don't require refitting for inference.
  • Support for scikit-learn>=1.0,<=1.2.
  • Multi-threshold fallback classification: skfb.estimators.multi_threshold_predict_or_fallback and skfb.estimators.MultiThresholdFallbackClassifier.
  • Fallback classification based on anomaly detection: skfb.estimators.AnomalyFallbackClassifier (#13 and more).
  • Fallback mode "ignore": don't return or store fallbacks (#16 and more).

Experimental

  • skfb.estimators.RateFallbackClassifierCV accepts only one fallback rate (#11).
  • Error-fallback loss:
    >>> from skfb.experimental import enable_error_rejection_loss
    >>> from skfb.metrics import error_rejection_loss
  • Tuned multi-threshold fallback classifier w/ cross-validation:
    >>> from skfb.experimental import enable_multi_threshold_fallback_classifier_cv
    >>> from skfb.estimators import MultiThresholdFallbackClassifierCV
  • Utility to summarize confidence scores class-wise.