Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

single precision support added for LeastSquares calculation #857

Merged
merged 4 commits into from
Jan 13, 2024
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion math/src/main/scala/breeze/stats/regression/Lasso.scala
Original file line number Diff line number Diff line change
Expand Up @@ -91,7 +91,7 @@ private case class LassoCalculator(
r2
}

private def estimateOneColumn(column: Int): LeastSquaresRegressionResult = {
private def estimateOneColumn(column: Int): LeastSquaresRegressionResult[Double] = {
/*
* Goal of this routine is to use the specified column to explain as much of the residual
* as possible, after using the already specified values in other columns.
Expand Down
215 changes: 180 additions & 35 deletions math/src/main/scala/breeze/stats/regression/LeastSquares.scala
Original file line number Diff line number Diff line change
@@ -1,16 +1,27 @@
package breeze.stats.regression


import breeze.generic.UFunc
import breeze.linalg._
import org.netlib.util.intW
import dev.ludovic.netlib.lapack.LAPACK.{getInstance => lapack}

import java.util.Arrays


trait NumericType[T]

object NumericType {
implicit object FloatIsNumeric extends NumericType[Float]
implicit object DoubleIsNumeric extends NumericType[Double]
}
private object leastSquaresImplementation {
def doLeastSquares(


def doLeastSquaresDouble(
data: DenseMatrix[Double],
outputs: DenseVector[Double],
workArray: Array[Double]): LeastSquaresRegressionResult = {
workArray: Array[Double]): LeastSquaresRegressionResult[Double] = {
require(data.rows == outputs.size)
require(data.rows > data.cols + 1)
require(workArray.length >= 2 * data.rows * data.cols)
Expand All @@ -37,69 +48,203 @@ private object leastSquaresImplementation {
for (i <- 0 until (data.rows - data.cols)) {
r2 = r2 + math.pow(outputs.data(data.cols + i), 2)
}
LeastSquaresRegressionResult(coefficients, r2)
LeastSquaresRegressionResult[Double](coefficients, r2)
}

def doLeastSquaresFloat(
data: DenseMatrix[Float],
outputs: DenseVector[Float],
workArray: Array[Float]): LeastSquaresRegressionResult[Float] = {
require(data.rows == outputs.size)
require(data.rows > data.cols + 1)
require(workArray.length >= 2 * data.rows * data.cols)

val info = new intW(0)
lapack.sgels(
"N",
data.rows,
data.cols,
1,
data.data,
data.rows,
outputs.data,
data.rows,
workArray,
workArray.length,
info)
if (info.`val` < 0) {
throw new ArithmeticException("Least squares did not converge.")
}

val coefficients = new DenseVector[Float](Arrays.copyOf(outputs.data, data.cols))
var r2 = 0.0
for (i <- 0 until (data.rows - data.cols)) {
r2 = r2 + math.pow(outputs.data(data.cols + i), 2)
}
LeastSquaresRegressionResult[Float](coefficients, r2.toFloat)
}
}

case class LeastSquaresRegressionResult(coefficients: DenseVector[Double], rSquared: Double)
extends RegressionResult[DenseVector[Double], Double] {
def apply(x: DenseVector[Double]): Double = coefficients.dot(x)

def apply(X: DenseMatrix[Double]): DenseVector[Double] = X * coefficients



case class LeastSquaresRegressionResult[T](coefficients: DenseVector[T], rSquared: T)(implicit ev: NumericType[T])
extends RegressionResult[DenseVector[T], T] {

def apply(x: DenseVector[T]): T = ev match {

case _: NumericType[Float] =>
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

let's make this method something like

def apply(x: DenseVector[T])(implicit can_dot: OpMulInner.Impl2[DenseVector[T], DenseVector[T], T]) = {
}

and then you can remove all of the switches and exception stuff.

val coeffs = coefficients.asInstanceOf[DenseVector[Float]]
val x_ins = x.asInstanceOf[DenseVector[Float]]
(coeffs .dot(x_ins)).asInstanceOf[T]
case _: NumericType[Double] =>
val coeffs = coefficients.asInstanceOf[DenseVector[Double]]
val x_ins = x.asInstanceOf[DenseVector[Double]]
(coeffs .dot(x_ins)).asInstanceOf[T]
case _ => throw new UnsupportedOperationException("Unsupported numeric type. Only Float and Double are supported")

}
def apply(X: DenseMatrix[T]): DenseVector[T] = ev match {
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

similarly

let's make this method something like

def apply(x: DenseVector[T])(implicit can_dot: OpMulMatrix.Impl2[DenseMatrix[T], DenseVector[T], T]) = {
}

and then you can remove all of the switches and exception stuff.

case _: NumericType[Float] =>
val coeffs = coefficients.asInstanceOf[DenseVector[Float]]
val mat = X.asInstanceOf[DenseMatrix[Float]]
(mat * coeffs).asInstanceOf[DenseVector[T]]

case _: NumericType[Double] =>
val coeffs = coefficients.asInstanceOf[DenseVector[Double]]
val mat = X.asInstanceOf[DenseMatrix[Double]]
(mat * coeffs).asInstanceOf[DenseVector[T]]

case _ => throw new UnsupportedOperationException("Unsupported numeric type. Only Float and Double are supported")
}
}


object leastSquares extends UFunc {
implicit val matrixVectorWithWorkArray
: Impl3[DenseMatrix[Double], DenseVector[Double], Array[Double], LeastSquaresRegressionResult] =
new Impl3[DenseMatrix[Double], DenseVector[Double], Array[Double], LeastSquaresRegressionResult] {
implicit val matrixVectorWithWorkArrayDouble
: Impl3[DenseMatrix[Double], DenseVector[Double], Array[Double], LeastSquaresRegressionResult[Double]] =
new Impl3[DenseMatrix[Double], DenseVector[Double], Array[Double], LeastSquaresRegressionResult[Double]] {
def apply(
data: DenseMatrix[Double],
outputs: DenseVector[Double],
workArray: Array[Double]): LeastSquaresRegressionResult =
leastSquaresImplementation.doLeastSquares(data.copy, outputs.copy, workArray)
workArray: Array[Double]): LeastSquaresRegressionResult[Double] =
leastSquaresImplementation.doLeastSquaresDouble(data.copy, outputs.copy, workArray)
}

implicit val matrixVectorSpecifiedWork
: Impl3[DenseMatrix[Double], DenseVector[Double], Int, LeastSquaresRegressionResult] =
new Impl3[DenseMatrix[Double], DenseVector[Double], Int, LeastSquaresRegressionResult] {
def apply(data: DenseMatrix[Double], outputs: DenseVector[Double], workSize: Int): LeastSquaresRegressionResult =
leastSquaresImplementation.doLeastSquares(data.copy, outputs.copy, new Array[Double](workSize))
implicit val matrixVectorWithWorkArrayFloat
: Impl3[DenseMatrix[Float], DenseVector[Float], Array[Float], LeastSquaresRegressionResult[Float]] =
new Impl3[DenseMatrix[Float], DenseVector[Float], Array[Float], LeastSquaresRegressionResult[Float]] {
def apply(
data: DenseMatrix[Float],
outputs: DenseVector[Float],
workArray: Array[Float]): LeastSquaresRegressionResult[Float] =
leastSquaresImplementation.doLeastSquaresFloat(data.copy, outputs.copy, workArray)
}

implicit val matrixVector: Impl2[DenseMatrix[Double], DenseVector[Double], LeastSquaresRegressionResult] =
new Impl2[DenseMatrix[Double], DenseVector[Double], LeastSquaresRegressionResult] {
def apply(data: DenseMatrix[Double], outputs: DenseVector[Double]): LeastSquaresRegressionResult =
leastSquaresImplementation.doLeastSquares(
implicit val matrixVectorSpecifiedWorkDouble
: Impl3[DenseMatrix[Double], DenseVector[Double], Int, LeastSquaresRegressionResult[Double]] =
new Impl3[DenseMatrix[Double], DenseVector[Double], Int, LeastSquaresRegressionResult[Double]] {
def apply(
data: DenseMatrix[Double],
outputs: DenseVector[Double],
workSize: Int): LeastSquaresRegressionResult[Double] =
leastSquaresImplementation.doLeastSquaresDouble(data.copy, outputs.copy, new Array[Double](workSize))
}

implicit val matrixVectorSpecifiedWorkFloat
: Impl3[DenseMatrix[Float], DenseVector[Float], Int, LeastSquaresRegressionResult[Float]] =
new Impl3[DenseMatrix[Float], DenseVector[Float], Int, LeastSquaresRegressionResult[Float]] {
def apply(
data: DenseMatrix[Float],
outputs: DenseVector[Float],
workSize: Int): LeastSquaresRegressionResult[Float] =
leastSquaresImplementation.doLeastSquaresFloat(data.copy, outputs.copy, new Array[Float](workSize))
}

implicit val matrixVectorDouble: Impl2[DenseMatrix[Double], DenseVector[Double], LeastSquaresRegressionResult[Double]] =
new Impl2[DenseMatrix[Double], DenseVector[Double], LeastSquaresRegressionResult[Double]] {
def apply(
data: DenseMatrix[Double],
outputs: DenseVector[Double]): LeastSquaresRegressionResult[Double] =
leastSquaresImplementation.doLeastSquaresDouble(
data.copy,
outputs.copy,
new Array[Double](math.max(1, data.rows * data.cols * 2)))
}

implicit val matrixVectorFloat: Impl2[DenseMatrix[Float], DenseVector[Float], LeastSquaresRegressionResult[Float]] =
new Impl2[DenseMatrix[Float], DenseVector[Float], LeastSquaresRegressionResult[Float]] {
def apply(
data: DenseMatrix[Float],
outputs: DenseVector[Float]): LeastSquaresRegressionResult[Float] =
leastSquaresImplementation.doLeastSquaresFloat(
data,
outputs,
new Array[Float](math.max(1, data.rows * data.cols * 2)))
}
}

object leastSquaresDestructive extends UFunc {
implicit val matrixVectorWithWorkArray
: Impl3[DenseMatrix[Double], DenseVector[Double], Array[Double], LeastSquaresRegressionResult] =
new Impl3[DenseMatrix[Double], DenseVector[Double], Array[Double], LeastSquaresRegressionResult] {
implicit val matrixVectorWithWorkArrayDouble
: Impl3[DenseMatrix[Double], DenseVector[Double], Array[Double], LeastSquaresRegressionResult[Double]] =
new Impl3[DenseMatrix[Double], DenseVector[Double], Array[Double], LeastSquaresRegressionResult[Double]] {
def apply(
data: DenseMatrix[Double],
outputs: DenseVector[Double],
workArray: Array[Double]): LeastSquaresRegressionResult =
leastSquaresImplementation.doLeastSquares(data, outputs, workArray)
workArray: Array[Double]): LeastSquaresRegressionResult[Double] =
leastSquaresImplementation.doLeastSquaresDouble(data, outputs, workArray)
}

implicit val matrixVectorSpecifiedWork
: Impl3[DenseMatrix[Double], DenseVector[Double], Int, LeastSquaresRegressionResult] =
new Impl3[DenseMatrix[Double], DenseVector[Double], Int, LeastSquaresRegressionResult] {
def apply(data: DenseMatrix[Double], outputs: DenseVector[Double], workSize: Int): LeastSquaresRegressionResult =
leastSquaresImplementation.doLeastSquares(data, outputs, new Array[Double](workSize))
implicit val matrixVectorWithWorkArrayFloat
: Impl3[DenseMatrix[Float], DenseVector[Float], Array[Float], LeastSquaresRegressionResult[Float]] =
new Impl3[DenseMatrix[Float], DenseVector[Float], Array[Float], LeastSquaresRegressionResult[Float]] {
def apply(
data: DenseMatrix[Float],
outputs: DenseVector[Float],
workArray: Array[Float]): LeastSquaresRegressionResult[Float] =
leastSquaresImplementation.doLeastSquaresFloat(data, outputs, workArray)
}

implicit val matrixVector: Impl2[DenseMatrix[Double], DenseVector[Double], LeastSquaresRegressionResult] =
new Impl2[DenseMatrix[Double], DenseVector[Double], LeastSquaresRegressionResult] {
def apply(data: DenseMatrix[Double], outputs: DenseVector[Double]): LeastSquaresRegressionResult =
leastSquaresImplementation.doLeastSquares(
implicit val matrixVectorSpecifiedWorkDouble
: Impl3[DenseMatrix[Double], DenseVector[Double], Int, LeastSquaresRegressionResult[Double]] =
new Impl3[DenseMatrix[Double], DenseVector[Double], Int, LeastSquaresRegressionResult[Double]] {
def apply(
data: DenseMatrix[Double],
outputs: DenseVector[Double],
workSize: Int): LeastSquaresRegressionResult[Double] =
leastSquaresImplementation.doLeastSquaresDouble(data, outputs, new Array[Double](workSize))
}

implicit val matrixVectorSpecifiedWorkFloat
: Impl3[DenseMatrix[Float], DenseVector[Float], Int, LeastSquaresRegressionResult[Float]] =
new Impl3[DenseMatrix[Float], DenseVector[Float], Int, LeastSquaresRegressionResult[Float]] {
def apply(
data: DenseMatrix[Float],
outputs: DenseVector[Float],
workSize: Int): LeastSquaresRegressionResult[Float] =
leastSquaresImplementation.doLeastSquaresFloat(data, outputs, new Array[Float](workSize))
}

implicit val matrixVectorDouble: Impl2[DenseMatrix[Double], DenseVector[Double], LeastSquaresRegressionResult[Double]] =
new Impl2[DenseMatrix[Double], DenseVector[Double], LeastSquaresRegressionResult[Double]] {
def apply(
data: DenseMatrix[Double],
outputs: DenseVector[Double]): LeastSquaresRegressionResult[Double] =
leastSquaresImplementation.doLeastSquaresDouble(
data,
outputs,
new Array[Double](math.max(1, data.rows * data.cols * 2)))
}

implicit val matrixVectorFloat: Impl2[DenseMatrix[Float], DenseVector[Float], LeastSquaresRegressionResult[Float]] =
new Impl2[DenseMatrix[Float], DenseVector[Float], LeastSquaresRegressionResult[Float]] {
def apply(
data: DenseMatrix[Float],
outputs: DenseVector[Float]): LeastSquaresRegressionResult[Float] =
leastSquaresImplementation.doLeastSquaresFloat(
data,
outputs,
new Array[Float](math.max(1, data.rows * data.cols * 2)))
}
}