Skip to content

R package that provides an implementation of the generic adaptive Monte Carlo Markov chain sampler proposed by Vihola (2011).

License

Notifications You must be signed in to change notification settings

scheidan/adaptMCMC

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Research software impact

adaptMCMC

R package that provides an implementation of the generic adaptive Monte Carlo Markov chain sampler proposed by Vihola (2011).

Getting started

library(adaptMCMC)

## ---------------------
## Define (non-normalized) log density

## log-pdf to sample from
p.log <- function(x) {
  B <- 0.03                              # controls 'bananacity'
  -x[1]^2/200 - 1/2*(x[2]+B*x[1]^2-100*B)^2
}


## ----------------------
## generate samples

## 1) non-adaptive sampling
samp.1 <- MCMC(p.log, n=200, init=c(0, 1), scale=c(1, 0.1),
               adapt=FALSE)

## 2) adaptive sampling
samp.2 <- MCMC(p.log, n=200, init=c(0, 1), scale=c(1, 0.1),
               adapt=TRUE, acc.rate=0.234)


## ----------------------
## summarize results

str(samp.2)
summary(samp.2$samples)

## covariance of last jump distribution
samp.2$cov.jump

## plot chains and marginals
plot(convert.to.coda(samp.2))

References

Vihola, M., 2011. Robust adaptive Metropolis algorithm with coerced acceptance rate. Statistics and Computing. https://doi.org/10.1007/s11222-011-9269-5

About

R package that provides an implementation of the generic adaptive Monte Carlo Markov chain sampler proposed by Vihola (2011).

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages