Generator based flow-control goodness for nodejs (and soon the browser), using thunks or promises, letting you write non-blocking code in a nice-ish way.
Currently you must use the --harmony-generators
flag when
running node 0.11.x to get access to generators.
Co is careful to relay any errors that occur back to the generator, including those
within the thunk, or from the thunk's callback. "Uncaught" exceptions in the generator
are passed to co()
's thunk.
Make sure to view the examples.
$ npm install co
View the wiki for libraries that work well with Co.
var co = require('co');
co(function *(){
var a = yield get('http://google.com');
var b = yield get('http://yahoo.com');
var c = yield get('http://cloudup.com');
console.log(a.status);
console.log(b.status);
console.log(c.status);
})()
co(function *(){
var a = get('http://google.com');
var b = get('http://yahoo.com');
var c = get('http://cloudup.com');
var res = yield [a, b, c];
console.log(res);
})()
The "yieldable" objects currently supported are:
- promises
- thunks (functions)
- array (parallel execution)
- objects (parallel execution)
- generators (delegation)
- generator functions (delegation)
To convert a regular node function that accepts a callback into one which returns a thunk you may want to use thunkify or similar.
While co supports promises, you may return "thunks" from your functions,
which otherwise behaves just like the traditional node-style callback
with a signature of: (err, result)
.
For example take fs.readFile
, we all know the signature is:
fs.readFile(path, encoding, function(err, result){
});
To work with Co we need a function to return another function of the same signature:
fs.readFile(path, encoding)(function(err, result){
});
Which basically looks like this:
function read(path, encoding) {
return function(cb){
fs.readFile(path, encoding, cb);
}
}
When co
is invoked with a receiver it will propagate to most yieldables,
allowing you to alter this
.
var ctx = {};
function foo() {
assert(this == ctx);
}
co(function *(){
assert(this == ctx);
yield foo;
}).call(ctx)
You also pass arguments through the generator:
co(function *(a){
assert(this == ctx);
assert('yay' == a);
yield foo;
}).call(ctx, 'yay');
Pass a generator fn
and return a thunk. The thunk's signature is
(err, result)
, where result
is the value passed to the return
statement.
var co = require('co');
var fs = require('fs');
function read(file) {
return function(fn){
fs.readFile(file, 'utf8', fn);
}
}
co(function *(){
var a = yield read('.gitignore');
var b = yield read('Makefile');
var c = yield read('package.json');
return [a, b, c];
})()
You may also yield Generator
objects to support nesting:
var co = require('co');
var fs = require('fs');
function size(file) {
return function(fn){
fs.stat(file, function(err, stat){
if (err) return fn(err);
fn(null, stat.size);
});
}
}
function *foo(){
var a = yield size('.gitignore');
var b = yield size('Makefile');
var c = yield size('package.json');
return [a, b, c];
}
function *bar(){
var a = yield size('examples/parallel.js');
var b = yield size('examples/nested.js');
var c = yield size('examples/simple.js');
return [a, b, c];
}
co(function *(){
var a = yield foo();
var b = yield bar();
console.log(a);
console.log(b);
})()
Or if the generator functions do not require arguments, simply yield
the function:
var thunkify = require('thunkify');
var request = require('superagent');
var get = thunkify(request.get);
function *results() {
var a = yield get('http://google.com')
var b = yield get('http://yahoo.com')
var c = yield get('http://ign.com')
return [a.status, b.status, c.status]
}
co(function *(){
// 3 concurrent requests at a time
var a = yield results;
var b = yield results;
var c = yield results;
console.log(a, b, c);
// 9 concurrent requests
console.log(yield [results, results, results]);
})()
If a thunk is written to execute immediately you may acheive parallelism
by simply yield
-ing after the call. The following are equivalent since
each call kicks off execution immediately:
co(function *(){
var a = size('package.json');
var b = size('Readme.md');
var c = size('Makefile');
return [yield a, yield b, yield c];
})()
Or using join:
co(function *(){
var a = size('package.json');
var b = size('Readme.md');
var c = size('Makefile');
return yield [a, b, c];
})()
You can also pass arguments into the generator. The last argument, done
, is
the callback function. Here's an example:
var exec = require('co-exec');
co(function *(cmd) {
var res = yield exec(cmd);
return res;
})('pwd', done);
By yielding an array of thunks you may "join" them all into a single thunk which executes them all concurrently, instead of in sequence. Note that the resulting array ordering is retained.
var co = require('co');
var join = co.join;
var fs = require('fs');
function size(file) {
return function(fn){
fs.stat(file, function(err, stat){
if (err) return fn(err);
fn(null, stat.size);
});
}
}
co(function *(){
var a = size('.gitignore');
var b = size('index.js');
var c = size('Makefile');
var res = yield join(a, b, c);
console.log(res);
// => [ 13, 1687, 129 ]
})()
As an alias of join(array)
you may simply yield
an array:
co(function *(){
var a = size('.gitignore');
var b = size('index.js');
var c = size('Makefile');
var res = yield [a, b, c];
console.log(res);
// => [ 13, 1687, 129 ]
})()
Nested joins may also be expressed as simple nested arrays:
var a = [
get('http://google.com'),
get('http://yahoo.com'),
get('http://ign.com')
];
var b = [
get('http://google.com'),
get('http://yahoo.com'),
get('http://ign.com')
];
console.log(yield [a, b]);
Yielding an object behaves much like yielding an array, however recursion is supported:
co(function *(){
var user = yield {
name: {
first: get('name.first'),
last: get('name.last')
}
};
})()
Here is the sequential equivalent without yielding an object:
co(function *(){
var user = {
name: {
first: yield get('name.first'),
last: yield get('name.last')
}
};
})()
On my machine 30,000 sequential stat()s takes an avg of 570ms,
while the same number of sequential stat()s with co()
takes
610ms, aka the overhead introduced by generators is extremely negligable.
MIT