Skip to content

Commit

Permalink
2x faster (rms) norm cuda kernels (3.7% e2e improvement) (ggerganov#2985
Browse files Browse the repository at this point in the history
)

* 2x faster (rms) norm cuda kernels

* Fix code style
  • Loading branch information
li-plus authored Sep 4, 2023
1 parent cf9b084 commit 3519568
Showing 1 changed file with 66 additions and 23 deletions.
89 changes: 66 additions & 23 deletions ggml-cuda.cu
Original file line number Diff line number Diff line change
Expand Up @@ -464,58 +464,91 @@ static __global__ void silu_f32(const float * x, float * dst, const int k) {
dst[i] = x[i] / (1.0f + expf(-x[i]));
}

static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
a.x += __shfl_xor_sync(0xffffffff, a.x, mask, 32);
a.y += __shfl_xor_sync(0xffffffff, a.y, mask, 32);
}
return a;
}

template <int block_size>
static __global__ void norm_f32(const float * x, float * dst, const int ncols) {
const int row = blockIdx.x*blockDim.y + threadIdx.y;
const int tid = threadIdx.x;

const float eps = 1e-5f;

float mean = 0.0f;
float var = 0.0f;
float2 mean_var = make_float2(0.f, 0.f);

for (int col = tid; col < ncols; col += WARP_SIZE) {
for (int col = tid; col < ncols; col += block_size) {
const float xi = x[row*ncols + col];
mean += xi;
var += xi * xi;
mean_var.x += xi;
mean_var.y += xi * xi;
}

// sum up partial sums
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
mean += __shfl_xor_sync(0xffffffff, mean, mask, 32);
var += __shfl_xor_sync(0xffffffff, var, mask, 32);
mean_var = warp_reduce_sum(mean_var);
if (block_size > WARP_SIZE) {
__shared__ float2 s_sum[32];
int warp_id = threadIdx.x / WARP_SIZE;
int lane_id = threadIdx.x % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = mean_var;
}
__syncthreads();
mean_var = s_sum[lane_id];
mean_var = warp_reduce_sum(mean_var);
}

mean /= ncols;
var = var / ncols - mean * mean;
const float inv_var = rsqrtf(var + eps);
const float mean = mean_var.x / ncols;
const float var = mean_var.y / ncols - mean * mean;
const float inv_std = rsqrtf(var + eps);

for (int col = tid; col < ncols; col += WARP_SIZE) {
dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_var;
for (int col = tid; col < ncols; col += block_size) {
dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_std;
}
}

static __device__ __forceinline__ float warp_reduce_sum(float x) {
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
x += __shfl_xor_sync(0xffffffff, x, mask, 32);
}
return x;
}

template <int block_size>
static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) {
const int row = blockIdx.x*blockDim.y + threadIdx.y;
const int tid = threadIdx.x;

float tmp = 0.0f; // partial sum for thread in warp

for (int col = tid; col < ncols; col += WARP_SIZE) {
for (int col = tid; col < ncols; col += block_size) {
const float xi = x[row*ncols + col];
tmp += xi * xi;
}

// sum up partial sums
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
tmp = warp_reduce_sum(tmp);
if (block_size > WARP_SIZE) {
__shared__ float s_sum[32];
int warp_id = threadIdx.x / WARP_SIZE;
int lane_id = threadIdx.x % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = tmp;
}
__syncthreads();
tmp = s_sum[lane_id];
tmp = warp_reduce_sum(tmp);
}

const float mean = tmp / ncols;
const float scale = rsqrtf(mean + eps);

for (int col = tid; col < ncols; col += WARP_SIZE) {
for (int col = tid; col < ncols; col += block_size) {
dst[row*ncols + col] = scale * x[row*ncols + col];
}
}
Expand Down Expand Up @@ -4203,14 +4236,24 @@ static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_

static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % WARP_SIZE == 0);
const dim3 block_dims(WARP_SIZE, 1, 1);
norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols);
if (ncols < 1024) {
const dim3 block_dims(WARP_SIZE, 1, 1);
norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols);
} else {
const dim3 block_dims(1024, 1, 1);
norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols);
}
}

static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
GGML_ASSERT(ncols % WARP_SIZE == 0);
const dim3 block_dims(WARP_SIZE, 1, 1);
rms_norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
if (ncols < 1024) {
const dim3 block_dims(WARP_SIZE, 1, 1);
rms_norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
} else {
const dim3 block_dims(1024, 1, 1);
rms_norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
}
}

static void quantize_row_q8_1_cuda(const float * x, void * vy, const int kx, const int ky, const int kx_padded, cudaStream_t stream) {
Expand Down

0 comments on commit 3519568

Please sign in to comment.