Skip to content

Commit

Permalink
CANN: RoPE and CANCAT operator optimization (ggerganov#10488)
Browse files Browse the repository at this point in the history
Co-authored-by: noemotiovon <[email protected]>
  • Loading branch information
noemotiovon and noemotiovon authored Nov 26, 2024
1 parent 0eb4e12 commit 7066b4c
Show file tree
Hide file tree
Showing 2 changed files with 106 additions and 187 deletions.
225 changes: 47 additions & 178 deletions ggml/src/ggml-cann/aclnn_ops.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@
*/

#include "aclnn_ops.h"
#include "ggml-impl.h"

#include <aclnnop/aclnn_avgpool2d.h>
#include <aclnnop/aclnn_cast.h>
Expand Down Expand Up @@ -241,10 +242,14 @@ void ggml_cann_concat(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
aclTensor* acl_src1 = ggml_cann_create_tensor(src1);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);

int64_t concat_dim = 1;
const int32_t dim = ggml_get_op_params_i32(dst, 0);

GGML_ASSERT(dim >= 0 && dim < 4);
int32_t acl_dim = 3 - dim;

aclTensor* tensors[] = {acl_src0, acl_src1};
aclTensorList* tensorList = aclCreateTensorList(tensors, 2);
aclnn_concat(ctx, tensorList, acl_dst, concat_dim);
aclnn_concat(ctx, tensorList, acl_dst, acl_dim);

ACL_CHECK(aclDestroyTensorList(tensorList));
ACL_CHECK(aclDestroyTensor(acl_dst));
Expand Down Expand Up @@ -1437,10 +1442,6 @@ void ggml_cann_im2col(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src0 = dst->src[0]; // kernel
ggml_tensor* src1 = dst->src[1]; // input

GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);

GGML_TENSOR_BINARY_OP_LOCALS;

// aclnnIm2col only works on 2D. set s1, p1, d1 to 1 to perform 2D
Expand All @@ -1462,9 +1463,6 @@ void ggml_cann_im2col(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
const int64_t OH = is_2D ? ne2 : 1;
const int64_t OW = ne1;

GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb10 == sizeof(float));

// memory allocated increased to 3x when is_2D == false
const int64_t n_bytes_factor = is_2D ? 1 : 3;

Expand Down Expand Up @@ -2859,15 +2857,27 @@ static void aclnn_cache_init(ggml_backend_cann_context& ctx, ggml_tensor* dst,
ACL_CHECK(aclDestroyTensor(acl_cos_tensor));
}

#ifdef __cplusplus
extern "C" {
#endif
aclnnStatus aclnnRotaryPositionEmbeddingGetWorkspaceSize(
const aclTensor* x, const aclTensor* cos, const aclTensor* sin,
int64_t mode, const aclTensor* yOut, uint64_t* workspaceSize,
aclOpExecutor** executor);
aclnnStatus aclnnRotaryPositionEmbedding(void* workspace,
uint64_t workspaceSize,
aclOpExecutor* executor,
aclrtStream stream);
#ifdef __cplusplus
}
#endif

void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
// TODO: use ascendc
// Only test with LLAMA model.
ggml_tensor* src0 = dst->src[0]; // input
ggml_tensor* src2 = dst->src[2]; // freq_factors

// TODO: with freq_factors
GGML_ASSERT(src2 == NULL);

// param
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
// const int n_past = ((int32_t *) dst->op_params)[0];
Expand All @@ -2885,13 +2895,19 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
memcpy(&beta_fast, (int32_t*)dst->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t*)dst->op_params + 10, sizeof(float));

GGML_ASSERT(n_dims <= ne0);
// TODO: with freq_factors
GGML_ASSERT(src2 == NULL);
// TODO: attn_factor != 1
GGML_ASSERT(attn_factor == 1);
// TODO: n_dims <= ne0
GGML_ASSERT(n_dims == ne0);
GGML_ASSERT(n_dims % 2 == 0);

// TODO: ext_factor != 0
GGML_ASSERT(ext_factor == 0);
// TODO: freq_scale != 1
GGML_ASSERT(freq_scale == 1);
// TODO: type == GGML_TYPE_F16
GGML_ASSERT(src0->type == GGML_TYPE_F32);

const float theta_scale = powf(freq_base, -2.0f / n_dims);

Expand Down Expand Up @@ -2924,177 +2940,30 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
aclnn_cache_init(ctx, dst, acl_cos_reshape_tensor, acl_sin_reshape_tensor,
theta_scale, is_neox);

// roll input
void* input_roll_buffer;
aclTensor* acl_minus_one_tensor;
void* minus_one_scale_buffer = nullptr;
ggml_cann_pool_alloc roll_allocator(ctx.pool(), ggml_nbytes(src0));
ggml_cann_pool_alloc minus_one_scale_allocator(
ctx.pool(), sizeof(float_t) * src0->ne[0]);
if (!is_neox) {
// roll input: [q0,q1,q2,q3,...] -> [q1,q0,q3,q2,...]
input_roll_buffer = roll_allocator.get();
int64_t input_roll_ne[4] = {2, src0->ne[1] * (src0->ne[0] / 2),
src0->ne[2], src0->ne[3]};
size_t input_roll_nb[GGML_MAX_DIMS];
input_roll_nb[0] = ggml_type_size(src0->type);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
input_roll_nb[i] = input_roll_nb[i - 1] * input_roll_ne[i - 1];
}
aclTensor* acl_input_roll_tensor = ggml_cann_create_tensor(
input_roll_buffer, ggml_cann_type_mapping(src0->type),
ggml_type_size(src0->type), input_roll_ne, input_roll_nb,
GGML_MAX_DIMS);
aclTensor* acl_input_tensor = ggml_cann_create_tensor(
src0->data, ggml_cann_type_mapping(src0->type),
ggml_type_size(src0->type), input_roll_ne, input_roll_nb,
GGML_MAX_DIMS);

int64_t shifts[] = {1};
int64_t dims[] = {3};
aclnn_roll(ctx, acl_input_tensor, acl_input_roll_tensor, shifts, dims);
ACL_CHECK(aclDestroyTensor(acl_input_roll_tensor));
ACL_CHECK(aclDestroyTensor(acl_input_tensor));

// init [-1, 1, -1, 1, ...]
minus_one_scale_buffer = minus_one_scale_allocator.get();

int64_t minus_one_ne[4] = {src0->ne[0], 1, 1, 1};
size_t minus_one_nb[GGML_MAX_DIMS];
minus_one_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
minus_one_nb[i] = minus_one_nb[i - 1] * minus_one_ne[i - 1];
}
acl_minus_one_tensor = aclnn_ones(
ctx, minus_one_scale_buffer, sizeof(float_t) * src0->ne[0],
minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float_t), 1);
int64_t dim = 3;
int64_t* index = new int64_t[src0->ne[0]];
for (int i = 0; i < src0->ne[0]; i++) {
index[i] = i / 2 * 2;
}
int64_t index_num = src0->ne[0];
float value = -1;
aclnn_index_fill_tensor(ctx, acl_minus_one_tensor, dim, index,
index_num, value);
} else {
// roll input: [q0,q1,q2,...] ->
// [q_half,q_half+1,...,q_end,q0,q1,...q_half-1]
input_roll_buffer = roll_allocator.get();
aclTensor* acl_input_roll_tensor = ggml_cann_create_tensor(
input_roll_buffer, ggml_cann_type_mapping(src0->type),
ggml_type_size(src0->type), src0->ne, src0->nb, GGML_MAX_DIMS);
aclTensor* acl_input_tensor = ggml_cann_create_tensor(src0);

int64_t shifts[] = {src0->ne[0] / 2};
int64_t dims[] = {3};
aclnn_roll(ctx, acl_input_tensor, acl_input_roll_tensor, shifts, dims);

ACL_CHECK(aclDestroyTensor(acl_input_roll_tensor));
ACL_CHECK(aclDestroyTensor(acl_input_tensor));
uint64_t workspaceSize = 0;
aclOpExecutor* executor;

// init [-1, -1, -1, 1, 1,1,...]
minus_one_scale_buffer = minus_one_scale_allocator.get();
void* workspaceAddr = nullptr;

int64_t minus_one_ne[4] = {src0->ne[0], 1, 1, 1};
size_t minus_one_nb[GGML_MAX_DIMS];
minus_one_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
minus_one_nb[i] = minus_one_nb[i - 1] * minus_one_ne[i - 1];
}
acl_minus_one_tensor = aclnn_ones(
ctx, minus_one_scale_buffer, sizeof(float_t) * src0->ne[0],
minus_one_ne, GGML_MAX_DIMS, ACL_FLOAT, sizeof(float_t), 1);
// -1 * first half
int64_t first_half_ne[4] = {src0->ne[0] / 2, 1, 1, 1};
size_t first_half_nb[GGML_MAX_DIMS];
first_half_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
first_half_nb[i] = first_half_nb[i - 1] * first_half_ne[i - 1];
}
aclTensor* acl_first_half_tensor = ggml_cann_create_tensor(
minus_one_scale_buffer, ACL_FLOAT, sizeof(float_t), first_half_ne,
first_half_nb, GGML_MAX_DIMS);
bool inplace = true;
float scale = -1;
aclnn_muls(ctx, acl_first_half_tensor, scale, nullptr, inplace);
ACL_CHECK(aclDestroyTensor(acl_first_half_tensor));
}

// TODO: n_dims < ne0
GGML_ASSERT(n_dims == src0->ne[0]);

// input * scale
ggml_cann_pool_alloc roll_mul_scale_allocator(ctx.pool(),
ggml_nbytes(src0));
void* input_roll_mul_scale_buffer = roll_mul_scale_allocator.get();
size_t input_nb[GGML_MAX_DIMS];
input_nb[0] = ggml_type_size(src0->type);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
input_nb[i] = input_nb[i - 1] * src0->ne[i - 1];
int acl_mode = mode;
if (mode == 0) {
acl_mode = 1;
}
aclTensor* acl_input_roll_mul_scale_tensor = ggml_cann_create_tensor(
input_roll_mul_scale_buffer, ggml_cann_type_mapping(src0->type),
ggml_type_size(src0->type), src0->ne, input_nb, GGML_MAX_DIMS);
aclTensor* acl_input_roll_reshape_tensor = ggml_cann_create_tensor(
input_roll_buffer, ggml_cann_type_mapping(src0->type),
ggml_type_size(src0->type), src0->ne, input_nb, GGML_MAX_DIMS);

aclnn_mul(ctx, acl_input_roll_reshape_tensor, acl_minus_one_tensor,
acl_input_roll_mul_scale_tensor);

// output
aclTensor* acl_src0 = ggml_cann_create_tensor(src0);
aclTensor* acl_x = ggml_cann_create_tensor(src0);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
void* output_fp32_buffer;
if (src0->type == GGML_TYPE_F32) {
aclnn_inplace_mul(ctx, acl_src0, acl_cos_reshape_tensor);
aclnn_inplace_mul(ctx, acl_input_roll_mul_scale_tensor,
acl_sin_reshape_tensor);
aclnn_add(ctx, acl_src0, acl_input_roll_mul_scale_tensor, acl_dst);
// TODO: ne0 != n_dims in mode2
} else if (src0->type == GGML_TYPE_F16) {
size_t input_fp32_nb[GGML_MAX_DIMS];
input_fp32_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
input_fp32_nb[i] = input_fp32_nb[i - 1] * dst->ne[i - 1];
}
ggml_cann_pool_alloc fp32_allocator1(
ctx.pool(), ggml_nelements(dst) * sizeof(float_t));
void* input_fp32_buffer1 = fp32_allocator1.get();
aclTensor* input_fp32_tensor1 = ggml_cann_create_tensor(
input_fp32_buffer1, ACL_FLOAT, sizeof(float_t), dst->ne,
input_fp32_nb, GGML_MAX_DIMS);
ggml_cann_pool_alloc fp32_allocator2(
ctx.pool(), ggml_nelements(dst) * sizeof(float_t));
void* input_fp32_buffer2 = fp32_allocator2.get();
aclTensor* input_fp32_tensor2 = ggml_cann_create_tensor(
input_fp32_buffer2, ACL_FLOAT, sizeof(float_t), dst->ne,
input_fp32_nb, GGML_MAX_DIMS);

ggml_cann_pool_alloc fp32_allocator(
ctx.pool(), ggml_nelements(dst) * sizeof(float_t));
output_fp32_buffer = fp32_allocator.get();
aclTensor* output_fp32_tensor = ggml_cann_create_tensor(
output_fp32_buffer, ACL_FLOAT, sizeof(float_t), dst->ne,
input_fp32_nb, GGML_MAX_DIMS);
aclnn_mul(ctx, acl_src0, acl_cos_reshape_tensor, input_fp32_tensor1);
aclnn_mul(ctx, acl_input_roll_mul_scale_tensor, acl_sin_reshape_tensor,
input_fp32_tensor2);
aclnn_add(ctx, input_fp32_tensor1, input_fp32_tensor2,
output_fp32_tensor);
aclnn_cast(ctx, output_fp32_tensor, acl_dst, ACL_FLOAT16);

ACL_CHECK(aclDestroyTensor(input_fp32_tensor1));
ACL_CHECK(aclDestroyTensor(input_fp32_tensor2));
ACL_CHECK(aclDestroyTensor(output_fp32_tensor));
ACL_CHECK(aclnnRotaryPositionEmbeddingGetWorkspaceSize(
acl_x, acl_cos_reshape_tensor, acl_sin_reshape_tensor, acl_mode, acl_dst, &workspaceSize, &executor));
if (workspaceSize > 0) {
ggml_cann_pool_alloc workspace_allocator(ctx.pool(), workspaceSize);
workspaceAddr = workspace_allocator.get();
}

ACL_CHECK(aclDestroyTensor(acl_sin_reshape_tensor));
ACL_CHECK(aclnnRotaryPositionEmbedding(workspaceAddr, workspaceSize,
executor, ctx.stream()));

ACL_CHECK(aclDestroyTensor(acl_x));
ACL_CHECK(aclDestroyTensor(acl_cos_reshape_tensor));
ACL_CHECK(aclDestroyTensor(acl_minus_one_tensor));
ACL_CHECK(aclDestroyTensor(acl_input_roll_mul_scale_tensor));
ACL_CHECK(aclDestroyTensor(acl_input_roll_reshape_tensor));
ACL_CHECK(aclDestroyTensor(acl_src0));
ACL_CHECK(aclDestroyTensor(acl_sin_reshape_tensor));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
68 changes: 59 additions & 9 deletions ggml/src/ggml-cann/ggml-cann.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1669,12 +1669,14 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
}
case GGML_OP_MUL_MAT: {
switch (op->src[0]->type) {
case GGML_TYPE_F16:
case GGML_TYPE_F32:
case GGML_TYPE_Q8_0:
// TODO: fix me
// Current groupsize should not be greater than k-1 in
// aclnnWeightQuantBatchMatmulV2GetWorkspaceSize().
// aclnnWeightQuantBatchMatmulV2GetWorkspaceSize
if (op->src[0]->ne[0] <= QK8_0) {
return false;
}
case GGML_TYPE_F16:
case GGML_TYPE_F32:
case GGML_TYPE_Q4_0:
return true;
default:
Expand Down Expand Up @@ -1706,9 +1708,61 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
return false;
}
}
case GGML_OP_CONT: {
// TODO: support GGML_TYPE_BF16
switch (op->src[0]->type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
return true;
default:
return false;
}
}
case GGML_OP_ROPE: {
// TODO: with ops-test v == 1
float * freq_scale = (float*)((int32_t*)op->op_params + 6);
float * ext_factor = (float*)((int32_t*)op->op_params + 7);
float * attn_factor = (float*)((int32_t*)op->op_params + 8);
// TODO: with freq_factors
if (op->src[2] != NULL) {
return false;
}
// TODO: n_dims <= ne0
if (op->src[0]->ne[0] != op->op_params[1]) {
return false;
}
// TODO: ext_factor != 0
if (*ext_factor != 0) {
return false;
}
// TODO: freq_scale != 1
if (*freq_scale != 1) {
return false;
}
// TODO: attn_factor != 1
if (*attn_factor != 1) {
return false;
}
//TODO: type == GGML_TYPE_F16
switch (op->src[0]->type) {
case GGML_TYPE_F32:
return true;
default:
return false;
}
}
case GGML_OP_UPSCALE: {
// aclnnUpsampleNearest2dGetWorkspaceSize not support
// selfDimN[2]/outDimN[2] or selfDimC[3]/outDimC[3] not equal
if (op->src[0]->ne[2] * op->ne[3] != op->src[0]->ne[3] * op->ne[2]) {
return false;
}
return true;
}
case GGML_OP_IM2COL:
case GGML_OP_CONCAT:
case GGML_OP_DUP:
case GGML_OP_REPEAT:
case GGML_OP_CONCAT:
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
Expand All @@ -1722,17 +1776,13 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
case GGML_OP_SCALE:
case GGML_OP_SQR:
case GGML_OP_CLAMP:
case GGML_OP_CONT:
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX:
case GGML_OP_ROPE:
case GGML_OP_IM2COL:
case GGML_OP_POOL_2D:
case GGML_OP_SUM_ROWS:
case GGML_OP_ARGSORT:
case GGML_OP_ACC:
case GGML_OP_GROUP_NORM:
case GGML_OP_UPSCALE:
case GGML_OP_PAD:
case GGML_OP_ARANGE:
case GGML_OP_TIMESTEP_EMBEDDING:
Expand Down

0 comments on commit 7066b4c

Please sign in to comment.