Skip to content

shanujshekhar/Visual_Data_Analytics

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Visual_Data_Analytics

Performing common visual data analytic tasks using Python and D3.js.

Tools and Languages Used

Data clustering

  • Implemented Random Sampling and Stratified Sampling
  • Performed K-means Clustering for Stratified Sampling using Elbow Method

Dimension reduction

  • Shows the bias introduced using the dimensionality reduction on both original and sampled data.
  • Using PCA to find Intrinsic dimensionality of the data

Scree plot visualization

  • Raw Data

  • Random Sampled Data

  • Stratified Sampled Data

  • Three attributes with highest PCA loadings

2D Scatter Plot Visualizations

Using top two PCA vectors

  • Raw Data

  • Random Sampled Data

  • Stratified Sampled Data

Using MDS (Euclidian & correlation distance)

Euclidiean Distance

  • Raw Data

  • Random Sampled Data

  • Stratified Sampled Data

Correlation Distance

  • Raw Data

  • Random Sampled Data

  • Stratified Sampled Data

Scatterplot matrix of the three highest PCA loaded attributes

  • Raw Data

  • Random Sampled Data

  • Stratified Sampled Data

Youtube Link:

https://www.youtube.com/watch?v=tTgrkyfKcsM&t=3s